Sains Malaysiana 50(12)(2021): 3493-3503

http://doi.org/10.17576/jsm-2021-5012-03

 

Determination of the Heavy Metal Contents and the Benefit/Cost Analysis of Hypericum salsugineum in the Vicinity of Salt Lake

(Penentuan Kandungan Logam Berat dan Analisis Faedah/Kos Hypericum salsugineum di Sekitar Salt Lake)

 

AYNUR DEMIR*1, GÖKÇEN BAYSAL FURTANA2, MEHTAP TEKŞEN3 & RUKIYE TIPIRDAMAZ4

 

1Department of Urbanization and Environmental Problems, Faculty of Economics and Administrative Sciences, Aksaray University, 68100 Aksaray, Turkey

 

2Department of Biology, Faculty of Science, Gazi University, 06500 Ankara,Turkey

 

3Department of Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey

 

4Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey

 

Diserahkan: 14 April 2020/Diterima: 21 April 2021

 

ABSTRACT

In this study, Hypericum salsugineum, an endemic halophytic plant growing around Salt Lake, was analyzed to determine the heavy metals (chromium, lead, copper, zinc and nickel) on it and on the soil it grew. The phytoremediation potential of H. salsugineum was evaluated. In addition, the benefit cost (B/C) analysis was performed for its potential use in phytoremediation. The plant and soil samples were collected from Eskil and Cihanbeyli between May and September in 2016. A total of 300 soil and plant samples were analysed for heavy metal content. Statistical and standard benefit/cost analyses were performed for assessment. The capacity of accumulating the aforementioned heavy metals was found to be high in H. salsugineum. It was found that Ni and Pb ratio exceeded optimum values in its habitat, and H. salsugineum accumulated available Ni and Pb. When the plant was evaluated in terms of benefit/cost, B/C ratio was greater than 1 during the useful life of the study. This conclusion increases the ecological and economical values of H. Salsugineum, effecting its potential use in phytoremediation.

 

Keywords: Economic value analysis; halophyte; Hypericum salsugineum; phytoremediation; Salt Lake

 

ABSTRAK

Dalam kajian ini, Hypericum salsugineum, sejenis tumbuhan halofit endemik yang tumbuh di sekitar Salt Lake telah dianalisis untuk menentukan kandungan logam berat (kromium, plumbum, kuprum, zink dan nikel) padanya dan pada tanah tempat ia tumbuh. Potensi fitopemulihan H. salsugineum juga telah dinilai. Selain itu, analisis nisbah faedah/kos (F/K) telah dilakukan untuk potensi kegunaan dalam fitopemulihan. Sampel tumbuhan dan tanah telah dikumpul daripada Eskil dan Cihanbeyli antara Mei dan September 2016. Sejumlah 300 sampel-sampel tanah dan tumbuhan telah dianalisis untuk kandungan logam berat. Analisis statistik dan analisis Piawai Faedah/Kos telah dilakukan sebagai penaksiran. Kapasiti pengumpulan logam berat tersebut telah diperoleh dalam jumlah yang tinggi di dalam H. salsugineum. Nisbah Ni dan Pb didapati telah melebihi nilai optimum dalam habitat dan kandungan yang dikumpul daripada H. salsugineum. Apabila tumbuhan ini dinilai berdasarkan faedah/kos, nisbah (F/K) telah menunjukkan nilai yang lebih besar daripada 1 sepanjang kajian dijalankan. Rumusan ini menambah nilai ekologi dan ekonomi H. salsugineum, yang seterusnya memberi kesan kepada potensinya untuk digunakan dalam fitopemulihan.

 

Kata kunci: Analisis nilai ekonomi; fitopemulihan; halofit; Hypericum salsugineum; Salt Lake

 

RUJUKAN

Abosede, A. & Mokin, I. 2017. Review on heavy metals contamination in the environment. European Journal of Earth and Environment 4(1): 1-6.

Acosta, J.A., Jansen, B., Kalbitz, K., Faz, A. & Martínez-Martínez, S. 2011. Salinity increases mobility of heavy metals in soils. Chemosphere 85(8): 1318-324.

Adıgüzel, N., Byfield, A., Duman, H. & Vural, M. 2005. Tuz Gölü ve Stepleri. In Türkiye’nin 122 Önemli Bitki Alanı, edited by Özhatay, N., Byfield, A. & Atay, S. İstanbul: Türkiye WWF Türkiye (Doğal Hayatı Koruma Vakfı) Yayını. pp. 289-292.

Anonymous. 2010. Salt Lake special environmental protection area habitat monitoring report. T.C. Ministry of Environment and Forestry Special Environmental Protection Agency. https://tvk.csb.gov.tr/tuz-golu-ozel-cevre-koruma-bolgesi-tur-ile-habitat-koruma-ve-izleme-projesi-proje. Accessed on 15 December 2017.

Arshad, M., Silvestre, J., Pinelli, E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., Shahid, M., Guiresse, M., Pradere, P. & Dumat, C. 2008. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71(11): 2187-2192.

Ayan, A.K., Kizilkaya, R., Cirak, C. & Kevseroglu, K. 2006. Heavy metal contents of St. John’s Wort (Hypericum perforatum L.) growing in northern Turkey. Journal of Plant Sciences 1(3): 182-186.

Aybar, M., Bilgin, A. & Sağlam, B. 2015. Removing heavy metals from the soil with phytoremediation. Artvin Çoruh University Natural Disasters Application and Research Center Journal of Natural Hazards and Environment 1(1-2): 59-65.

Baker, A.J.M. & Brooks, R.R. 1989. Terrestrial higher plants which hyperaccumulate metallic elements - A review of their distribution. Ecology and Phytochemistry, Biorecovery 1: 81-126.

Basak, E. 2003. Economic and socio-economic valuation of Tuz Gölü specially protected area, Central Anatolia, Turkey. Wageningen University. M.Sc. Thesis (Unpublished).

Baysal Furtana, G., Duman, H. & Tıpırdamaz, R. 2013. Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish Journal of Botany 37(3): 455-463.

Benavides, M.P., Gallego, S.M. & Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17(1): 21-34.

Bingöl, Ü., Cosge, B. & Gürbüz, B. 2010. Hypericum species in the flora of Turkey. Medicinal and Aromatic Plant Science and Biotechnology 5(1): 86-90.

Blaylock, M.J. & Huang, J.W. 2000. Phytoextraction of metals. In Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment, edited by Raskin, I. & Ensley, B.D. New York: Wiley. pp. 53-70.

Brooks, R.R. 1998. General introduction. In Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining, edited by Brooks, R.R. New York: CAB International. pp. 1-14.

Castro, R., Pereira, S., Ana Lima, A., Corticeiro, S., V´alega, M., Pereira, E., Duarte, A. & Figueira, E. 2009. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76(10): 1348-1355.

Chibuike, U.G. & Obiora, C.S. 2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014: 752708.

Choi, Y.E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T. & Sano, H. 2001. Detoxification of cadmium in tobacco plants: Formation and active secretion of crystals containing cadmium and calcium through trichomes. Planta 213(1): 45-50.

Clemens, S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11): 1707-1719.

Cunningham, S.D. & Ow, D.W. 1996. Promises and prospects of phytoremediation. Plant Physiology 110(3): 715-719.

Davis, P.H. 1967. Flora of Turkey and the East Aegean Islands 2. Edinburgh: Edinburgh University Press.

Demir, A. 2014. Recreational use value of Tuz Lake in Turkey. Journal of Food, Agriculture & Environment 12(2): 1092-1096.

Duman, F., Aksoy, A. & Demirezen, D. 2007. Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environmental Monitoring and Assessment 133(1-3): 277-283.

Ellis, D.R. & Salt, D.E. 2003. Plants selenium and human health. Current Opinion in Plant Biology 6(3): 273-279.

Ghnaya, T., Slama, I., Messedi, D., Grignon, C., Ghorbel, M.H. & Abdelly, C. 2007. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: Consequences on growth. Chemosphere 67(1): 72-79.

Ghnaya, T., Nouairi, I., Slama, I., Messedi, D., Grignon, C., Abdelly, C. & Ghorbel, M.H. 2005. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology 162(10): 1133-1140.

Ghosh, M. & Singh, S.P. 2005. Comparative uptake and phytoextraction study of soil induced chromium by accumulator and high biomass weed species. Applied Ecology and Environmental Research 3(2): 67-79.

Glass, D.J. 1999. Economic potential of phytoremediation. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, edited by Raskin, I. & Ensley, B.D. New York: John Wiley & Sons. pp. 15-31.

Glass, D.J. 2000. The 2000 Phytoremediation Industry. Needham: Glass Associates.

IUCN. 2019. Guidelines for Using the IUCN Red List Categories and Criteria: version 4. Gland: IUCN Standards and Petitions Committee.

Jordan, F.L., Robin-Abbott, M., Maier, R.M. & Glenn, E.P. 2002. A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology Chemistry 21(12): 2698-2704.

Lasat, M.M. 2000. The Use of Plants for the Removal of Toxic Metals from Contaminated Soil. Washington: U.S. Environmental Protection Agency.

Lef´evre, I., Marchal, G., Meerts, P., Corr´eal, E. & Lutts, S. 2009. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental Experimental Botany 65(1): 142-152.

Lintern, M., Anand, R., Ryan, C. & Paterson, D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature Communications 4: 2274.

Lone, M.I., Raza, S.H., Muhammad, S., Naeem, M.A. & Khalid, M. 2006. Lead content in soil and wheat tissue along roads with different traffic loads in Rawalpindi District. Pakistan Journal of Botany 38(4): 1035-1042.

Long, X.X., Yang, X.E. & Ni, W.Z. 2002. Current status and perspective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology 13: 757-762.

Lutts, S. & Lef’evre, I. 2015. Review: Part of a special issue on halophytes and saline adaptations. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany 115(3): 509-528.

Manousaki, E. & Kalogerakis, N. 2011. Halophytes - An emerging trend in phytoremediation. International Journal of Phytoremediation 13(10): 959-969.

Manousaki, E. & Kalogerakis, N. 2009. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environmental Science and Pollution Research 16(7): 844-854.

Manousaki, E., Galanaki, K., Papadimitriou, L. & Kalogerakis, N. 2013. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss.: two contrasting ecotypes. International Journal Phytoremediation 16(7-8): 755-769.

Manousaki, E., Kadukova, J., Papadantonakis, N. & Kalogerakis, N. 2008. Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non saline and saline soils. Environmental Research 106(3): 326-332.

Memon, A.R., Aktopraklıgil, D., Özdemir, A. & Vertii, A. 2001. Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal Botany 25(3): 111-121.

Milner, M.J. & Kochian, L.V. 2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany 102(1): 3-13.

Mishan, E.J. 1972. The futility of pareto-efficient distributions. The American Economic Review 62(5): 971-976.

Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters 8(3): 199-216.

Niess, D.H. 1999. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology 51: 730-750.

Oosten, M.J.V. & Maggio, A. 2015. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany 111: 135-146.

Radanović, D., Antić-Mladenović, S. & Jakovljević, M. 2002. Influence of some soil characteristics on heavy metal content in Hypericum perforatum L. and Achillea millefolium L. Acta Horticulturae 576: 295-301. 

Reeves, R.D. 2006. Hyperaccumulation of trace elements by plants. In Phytoremediation of Metal-Contaminated Soils NATO Science Series: IV: Earth and Environmental Sciences, edited by Morel, J.L., Echevarria, G. & Goncharova, N. New York: Springer. pp. 1-25.

Salt, D.E., Prince, R.C., Pickering, I.J. & Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiology 109(4): 1427-1433.

Shafaghat, A., Salimi, F., Valiei, M., Salehzadeh, J. & Shafaghat, M. 2012. Removal of heavy metals (Pb2+, Cu2+ and Cr3+) from aqueous solutions using five plants materials. African Journal of Biotechnology 11(4): 852-855.

Shi, W., Shao, H., Li, H., Shao, M. & Du, S. 2009. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials 170(1): 1-6.

Srivastava, V., Sarkar, A., Singh, S., Singh, P., Araujo, A.S.F. & Singh, R.P. 2017. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science 5: 64-82.

Tuğ, G.N. 2006. Determination of the factors effective on zonation of halophytic vegetation of Salt Lake, Inner Anatolia, Turkey. Ankara University. PhD. Thesis (Unpublished).

Tuğ, G.N. & Duman, F. 2010. Heavy metal accumulation in soils around Salt Lake in Turkey. Pakistan Journal of Botany 42(4): 2327-2333.

Wuana, R.A. & Okieimen, F.E. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices 2011: 402647.

Yang, Y.Y., Jung, J.Y., Song, W.Y., Suh, H.S. & Lee, Y. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiology 124(3): 1019-1026.

 

*Pengarang untuk surat-menyurat; email: aynurdemir_1@hotmail.com

 

 

   

sebelumnya