Sains Malaysiana 49(8)(2020): 1935-1945
http://dx.doi.org/10.17576/jsm-2020-4908-15
Kecekapan Filem Kanji/Minyak Kayu Manis sebagai
Pembungkus Makanan dengan Sifat Antimikrob
(Effectiveness of Starch/Cinnamon Oil Film as Food Packaging with
Antimicrobial Properties)
UMMI HABIBAH
ABDULLAH1, ISHAK AHMAD1*, AINON HAMZAH2 &
NOOR AFIZAH ROSLI1
1Jabatan
Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Program
Sains Biologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 21
Januari 2020/Diterima: 14 April 2020
Abstrak
Dalam kajian ini,
filem kanji/minyak kayu manis telah dihasilkan menggunakan kaedah pengacauan
larutan dengan kandungan minyak kayu manis (MKM) berbeza untuk mengkaji kesan
MKM terhadap sifat antimikrob filem kanji. Sifat kelutsinaran filem didapati
berkurang apabila peratus kandungan MKM meningkat yang telah menghalang
penembusan cahaya. Sementara itu, analisis ATR-FTIR mendapati bahawa tiada
penyesaran puncak atau pembentukan puncak baharu yang menunjukkan bahawa MKM
dan filem kanji tidak terikat secara kimia. Kajian aktiviti antimikrob filem
ini terhadap Bacillus
cereus dan Aspergillus niger telah mendapati berlakunya peningkatan kecekapan
aktiviti antimikrob bagi penambahan minyak kayu manis (MKM) dengan peningkatan
diameter zon perencatan. Didapati berlaku perencatan pada kepekatan minimum MKM
ditingkatkan bermula 16% dalam filem kanji mencatatkan
corak pertumbuhan dalam zon rencatan dengan diameter 24-44.2 mm dengan peningkatan 28.23-37.88% dan 34.12-52%,
masing-masing bagi zon perencatan terhadap B. cereus dan A. niger berbanding
tiada sebarang zon perencatan untuk filem kanji tanpa penambahan MKM. Pemerhatian morfologi menunjukkan
pembentukan liang dan pemisahan fasa yang heterogen antara MKM dan kanji.
Tegangan maksimum filem pula menunjukkan pengurangan kekuatan tegangan apabila
kepekatan MKM bertambah walaupun tidak ketara pada peningkatan MKM sehingga
24%. Sebaliknya, terikan pada takat putus filem didapati meningkat sebanyak
102-252% selari dengan penambahan MKM yang bertindak sebagai agen pemplastikan. Keseluruhannya, filem kanji/MKM telah berjaya
disediakan dan pencirian sifat fizikal dan aktiviti antimikrob bagi filem ini
menunjukkan potensinya dalam penggunaan pembungkusan makanan.
Kata
kunci: Ciri fizikal; kanji; minyak kayu manis; sifat antimikrob
Abstract
In
this study, starch/cinnamon oil film was prepared by solution casting method
with different concentrations of cinnamon oil (MKM) to study the effect of
cinnamon oil on the antimicrobial properties of starch film. The transparency
of the films was reduced with the increment of MKM. The transparency of the
film was found to decrease as the percentage of MKM content increased which
prevented light penetration. Meanwhile, ATR-FTIR analysis showed neither
shifting of peak positions nor new peak formation which showed that MKM and
starch film were not chemically bound. The antimicrobial
studies of the films on Bacillus cereus and Aspergillus niger recorded the improvement of
antimicrob activities with the addition of MKM with the increase of inhibition
zone. It was found that inhibition at the minimum MKM concentration increased
from 16% in the starch film to a growth pattern in the zone of 24-44.2 mm in
diameter with 28.23-37.88% and 34.12-52% increase in B. cereus and A. niger, respectively, compared to no inhibition zone for starch film without the
addition of MKM. Morphological observations indicate pore formation and
heterogeneous phase separation between MKM and starch. The maximum tensile
strength of the film showed a decrease in tensile strength as the concentration
of MKM increased despite not significant increase in MKM up to 24%. On the
other hand, strain at break was found to increase by 102-252% in line with the
addition of MKM acting as a plasticizing agent. In conclusion, starch/MKM films
were successfully prepared and characterized. The physical and antimicrobial
properties of the films displayed promising potential in food packaging
application.
Keywords:
Antimicrobial properties; cinnamon oil; physical properties; starch
RUJUKAN
Afandi, A., Lazim,
A.M., Azwanida, N.N., Bakar, M.A., Airianah, O.B. & Fazry, S. 2017.
Antibacterial properties of crude aqueous Hylocereus polyrhizus peel
extracts in lipstick formulation against gram-positive and negative bacteria. Malaysian
Applied Biology 46(2): 29-34.
Ahmed, A.J.,
Thomas, L. & Arfat, Y.A. 2018. Rheological, structural and functional
properties qunoa starch. Carbohydrate Polymers 116: 302-311.
Ahmed, J., Mulla,
M.Z. & Arfat, Y.A. 2016. Thermo-mechanical, structural characterization and
antibacterial performance of solvent casted polylactide/cinnamon oil composite
films. Food Control 69:
196-204.
Ali, A., Chen, Y.,
Liu, H., Yu, L., Khalid, S., Zhu, J. & Chen, L. 2018. Starch-based
antimicrobial films functionalized by pomegranate peel. International
Journal of Biological Macromolecules 60(19):
4841-4848.
Amaral, J.,
Dannenberg, S., Biduski, B., Lisie, S., Hüttner, D., Arocha, M. & Maria, A.
2019. Antibacterial activity, optical, mechanical and barrier properties of
corn starch films containing orange essential oil. Carbohydrate Polymer 222: 114981.
Arancibia, M.,
Giménez, B., López-Caballero, M.E., Gómez-Guillén, M.C. & Montero, P. 2014.
Release of cinnamon essential oil from polysaccharide bilayer films and its use
for microbial growth inhibition in chilled shrimps. LWT - Food Science and
Technology 59(2): 989-995.
Atares, L. &
Chiralt, A. 2016. Essential oils as additives in biodegradable films and
coatings for active packaging. Trends in Food Science & Technology 48: 51-62.
Botelho, L.N.S.,
Rocha, D.A., Braga, M.A., Silva, A. & de Abreu, C.M.P. 2016. Quality of
guava cv. “Pedro Sato” treated with cassava starch and cinnamon essential oil. Scientia
Horticulturae 209: 214-220.
Bullerman, L.B.,
Lieu, F.Y. & Seier, S.A. 1977. Inhibition of growth and aflatoxin
production by cinnanamon and clove oils. Cinnamic aldehyde and eugenol. Journal
of Food Science 42(4): 1107-1109.
Capek, P., Drábik,
M. & Turjan, J. 2010. Characterization of starch and its mono and hybrid
derivatives by thermal analysis and FT-IR spectroscopy. Journal of Thermal
Analysis and Calorimetry 99(2): 667-673.
Chao, S.C., Young,
D.G. & Oberg, C.J. 2000. Screening for inhibitory activity of essential
oils on selected bacteria, fungi and viruses screening for inhibitory activity
of essential oils on selected bacteria, fungi and viruses. Journal of
Essential Oil Research 12(5):
37-41.
Chu, Y., Xu, T.,
Gao, C., Liu, X., Zhang, N., Feng, X., Liu, X., Shen, X. & Tang, X. 2019.
Evaluations of physicochemical and biological properties of pullulan-based fi
lms incorporated with cinnamon essential oil and Tween 80. International
Journal of Biological Macromolecules 122:
388-394.
Dankar, I., Haddarah,
A., Omar, F.E., Pujolà, M. & Sepulcre, F. 2018. Characterization of food
additive-potato starch complexes by FTIR and X-ray diffraction. Food
Chemistry 260: 7-12.
Diao, M., Qi, D., Xu,
M., Lu, Z., Lv, F., Bie, X. & Zhao, H. 2018. Antibacterial activity and
mechanism of monolauroyl-galactosylglycerol against Bacillus cereus. Food Control 85: 339-344.
Dufresne, A.,
Thomas, S. & Pothan, L.A. 2013. Biopolymer Nanocomposites. New Jersey: John
Wiley & Sons.
Dumoulin, Y.,
Alex, S., Szabo, P., Cartilier, L. & Alexandru, M. 1998. Cross-linked
amylose as matrix for drug controlled release. X-ray and FT-IR structural
analysis. Carbohydrate Polymers 37(4): 361-370.
Espitia, P., Soares,
N., Botti, L., Melo, N.R., Pereira, O. & Silwa, W. 2012. Assessment of the
efficiency of essential oils in the preservation of postharvest papaya in
antimicrobial packaging systerm. Brazillian Journal of Food Technology 15(4): 332-342.
Famá, L., Flores,
S.K., Gerschenson, L. & Goyanes, S. 2006. Physical characterization of
cassava starch biofilms with special reference to dynamic mechanical properties
at low temperatures. Carbohydrate Polymers 66(1): 8-15.
Famá, L., Rojas,
A.M., Goyanes, S. & Gerschenson, L. 2005. Mechanical properties of
tapioca-starch edible films containing sorbates. LWT - Food Science and
Technology 38(6): 631-639.
Garcia, N.L.,
Ribba, L., Dufresne, A., Aranguren, M. & Goyanes, S. 2011. Effect of
glycerol on the morphology of nanocomposites made from thermoplastic starch and
starch nanocrystals. Carbohydrate Polymers 84(1): 203-210.
Ghasemlou, M.,
Aliheidari, N., Fahmi, R. & Shojaee-aliabadi, S. 2013. Physical, mechanical
and barrier properties of corn starch films incorporated with plant essential
oils. Carbohydrate Polymers 98(1):
1117-1126.
Han, J.H. &
Floros, J.D. 1997. Casting antimicrobial packaging films and measuring their
physical properties and antimicrobial activity. Journal of Plastic Film
& Sheeting 13(4): 287-298.
Han, Y., Yu, M.
& Wang, L. 2018. Physical and antimicrobial properties of sodium
alginate/carboxymethyl cellulose films incorporated with cinnamon essential
oil. Food Packaging and Shelf Life 15(11): 35-42.
Han, Y., Yu, M.
& Wang, L. 2017. Physical and antimicrobial properties of sodium
alginate/carboxymethyl cellulose films incorporated with cinnamon essential
oil. Food Packaging and Shelf Life 11: 1-8.
Hu, J., Wang, X.,
Xiao, Z. & Bi, W. 2015. Effect of chitosan nanoparticles loaded with
cinnamon essential oil on the quality of chilled pork. LWT - Food Science
and Technology 63(1): 519-526.
Jaramillo, C.M.,
Gutiérrez, T.J., Goyanes, S., Bernal, C. & Famá, L. 2016. Biodegradability
and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate
Polymers 151: 150-159.
Jiugao, Y. &
Ning, W. 2005. The effects of citric acid on the properties of thermoplastic
starch plasticized by glycerol. Starch - Stärke57(10): 494-504.
Jouki, M.,
Mortazavi, S.A., Yazdi, F.T. & Koocheki, A. 2014. Characterization of
antioxidant-antibacterial quince seed mucilage films
containing thyme essential oil. Carbohydrate
Polymers 99: 537-546.
Kim, H., Beak,
S.E. & Song, K.B. 2018. Development of a hag fish skin gelatin film
containing cinnamon bark essential oil. LWT - Food Science and Technology 96(5): 583-588.
Li, J., Ye, F.,
Lei, L. & Zhao, G. 2018. Combined effects of octenylsuccination and oregano
essential oil on sweet potato starch films with an emphasis on water
resistance. International Journal of Biological Macromolecules 115: 547-553.
Li, Y., Kong, D.
& Wu, H. 2013. Analysis and evaluation of essential oil components of
cinnamon barks using GC - MS and
FTIR spectroscopy. Industrial Crops and Products 41: 269-278.
Ma, Q., Zhang, Y.,
Critzer, F., Davidson, P.M., Zivanovic, S. & Zhong, Q. 2015. Physical,
mechanical, and antimicrobial properties of chitosan films with microemulsions
of cinnamon bark oil and soybean oil. Food Hydrocolloids 52: 533-542.
Muller, J.,
González-martínez, C. & Chiralt, A. 2017. Polylactic acid (PLA) and starch
bilayer films, containing cinnamaldehyde, obtained by compression moulding. European
Polymer Journal 95(7): 56-70.
Ojagh, S.M.,
Rezaei, M., Razavi, S.H. & Hosseini, S.M.H. 2010. Effect of chitosan
coatings enriched with cinnamon oil on the quality of refrigerated rainbow
trout. Food Chemistry 120(1):
193-198.
Oriani, V.B.,
Molina, G., Chiumarelli, M., Pastore, G.M. & Hubinger, M.D. 2014.
Properties of cassava starch-based edible coating containing essential oils. Journal
of Food Science 79(2): 189-194.
Oussalah, M.,
Caillet, S. & Lacroix, M. 2006. Mechanism of action of Spanish oregano,
Chinese cinnamon, and savory essential oils against cell membranes and walls of Esherichia coli O157:H7 and Listeria monocytogenes. Journal of Protection 69(5): 1046-1055.
Peng, Y. & Li,
Y. 2014. Food hydrocolloids combined effects of two kinds of essential oils on
physical, mechanical and structural properties of chitosan films. Food
Hydrocolloids 36: 287-293.
Phan, T.D., Peroval,
C., Debeaufort, F., Despre, D., Courthaudon, J.L. & Voilley, A. 2002.
Arabinoxylan-lipid-based edible films and coatings. Influence of drying
temperature on film structure and functional properties. Journal of
Agricultural and Food Chemsitry 50: 2423-2428.
Piñeros-Hernandez,
D., Medina-Jaramillo, C., López-Córdoba, A. & Goyanes, S. 2017. Edible
cassava starch films carrying rosemary antioxidant extracts for potential use
as active food packaging. Food Hydrocolloids 63: 488-495.
Pitt, J.I. &
Hocking, A.D. 2009. Fungi and Food Spoilage. New
York: Springer.
PlasticsEurope
2016. An analysis of European plastics production, demand and wate data. Plastic-The
Facts. Association of Plastics Manufactures.
Rosli, N.A.,
Ahmad, I, Anuar, F.H. & Abdullah, I. 2018. The contribution of eco-friendly
bio-based blends on enhancing the thermal stability and biodegradability of
poly(lactic acid). Journal of Cleaner
Production 198: 987-995.
Sánchez-gonzález,
L., González-martínez, C., Chiralt, A. & Cháfer, M. 2010. Physical and
antimicrobial properties of chitosan - tea
tree essential oil composite films. Journal of Food Engineering 98: 443-452.
Sánchez-González,
L., Vargas, M., González-Martínez, C., Chiralt, A. & Cháfer, M. 2009.
Characterization of edible films based on hydroxypropylmethylcellulose and tea
tree essential oil. Food Hydrocolloids 23(8): 2102-2109.
Seligra, P.G.,
Medina Jaramillo, C., Famá, L. & Goyanes, S. 2016. Biodegradable and
non-retrogradable eco-films based on starch-glycerol with citric acid as
crosslinking agent. Carbohydrate Polymers 138: 66-74.
Sessini, V.,
Arrieta, M.P., Kenny, J.M. & Peponi, L. 2016. Processing of edible films
based on nanoreinforced gelatinized starch. Polymer Degradation and
Stability 132: 157-168.
Shamsuri, A.A.,
Daik, R., Ahmad, I. & Jumali, M.H.H. 2009. Nylon-6/liquid natural rubber
blends prepared via emulsion dispersion. Journal
of Polymer Research 16(4): 381-387.
Sheng, L., Li, P.,
Wu, H., Liu, Y., Han, K.E., Gouda, M., Tong, Q., Ma, M. & Jin, Y. 2018.
Tapioca starch-pullulan interaction during gelation and retrogradation. LWT
- Food Science and Technology 96(5):
432-438.
Shiku, Y.,
Hamaguchi, P.Y., Benjakul, S., Visessanguan, W. & Tanaka, M. 2004. Effect
of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry 86: 493-499.
Siah, W.M.,
Abdullah, A. & Ahmad, I. 2015. Edible films from seaweed (Kappaphycus
alvarezii). International Food
Research Journal 22(6): 2230-2236.
Song, X., Zuo, G.
& Chen, F. 2018. Effect of essential oil and surfactant on the physical and
antimicrobial properties of corn and wheat starch films. International
Journal of Biological Macromolecules 107:
1302-1309.
Subhankulov, M.A.
& Krainova, L.I. 1979. Properties and production characteristics of
vomiting, diarrheal, and necrotizing toxins of B. cereus. American Journal of Clinical Nutrition 32(1): 219-228.
Tongnuanchan, P.,
Benjakul, S., Prodpran, T., Pisuchpen, S. & Osako, K. 2016. Mechanical,
thermal and heat sealing properties of fish skin gelatin film containing palm
oil and basil essential oil with different surfactants. Food Hydrocolloids 56: 93-107.
Tongnuanchan, P.,
Benjakul, S. & Prodpran, T. 2015. Emulsion film based on fish skin gelatin
and palm oil: Physical, structural and thermal properties. Food
Hydrocolloids 48: 248-259.
United States Food and Drug Administration
(U.S. FDA). 2009. Code of Federal Regulations Title
21.
Valencia-sullca,
C., Vargas, M., Atares, L. & Chiralt, A. 2017. Thermoplastic cassava
starch-chitosan bilayer films containing essential oils. Food Hydrocolloids 19: 53-61.
Wang, L., Liu, F.,
Jiang, Y., Chai, Z., Li, P., Cheng, Y. & Jing, H. 2011. Synergistic
antimicrobial activities of natural essential oils with chitosan films. Journal
of Agricultural and Food Chemistry 59(23): 12411-12419.
Wen, P., Zhu,
D.H., Wu, H., Zong, M.H., Jing, Y.R. & Han, S.Y. 2016. Encapsulation of
cinnamon essential oil in electrospun nanofibrous film for active food
packaging. Food Control 59:
366-376.
Wendakoon, C.
& Sakaguchi, M. 1995. Inhibition of amino acid decarboxylase activity of Enterobacter
aerogenes by active components in spices. Journal of Food Protection 58(3): 280-283.
Wu, J., Sun, X.,
Guo, X., Ge, S. & Zhang, Q. 2017. Physicochemical properties, antimicrobial
activity and oil release of fish gelatin films incorporated with cinnamon
essential oil. Aquaculture and Fisheries 2: 185-192.
Xie, F., Pollet,
E., Halley, P.J. & Avérous, L. 2013. Starch-based nano-biocomposite. Progress
in Polymer Science 38: 1590-1628.
Xing, F., Hua, H.,
Selvaraj, J.N., Zhao, Y., Zhou, L. & Liu, X. 2014. Growth inhibition and
morphological alterations of Fusarium verticillioides by cinnamon oil
and cinnamaldehyde. Food Control 46:
343-350.
Young, R.J.,
Bannister, D.J., Cervenka, A.J. & Ahmad,
I. 2000. Effect of surface treatment upon the pull-out behaviour of aramid
fibres from epoxy resins. Journal of Materials Science 35(8): 1939-1947.
Zainuddin, N., Ahmad,
I., Kargarzadeh, H. & Ramli, S. 2017. Hydrophobic kenaf nanocrystalline cellulose for the
binding of curcumin. Carbohydrate
Polymers 163: 261-269.
Zhang, Y., Ma, Q.,
Critzer, F., Davidson, P.M. & Zhong, Q. 2015. Physical and antibacterial
properties of alginate films containing cinnamon bark oil and soybean oil. LWT-Food
Science and Technology 64(1):
423-430.
*Pengarang untuk
surat menyurat; email: gading@ukm.edu.my
|