Sains Malaysiana 49(8)(2020): 1865-1874

http://dx.doi.org/10.17576/jsm-2020-4908-09

 

Effect of FGF-2 and PDGF-BB on a Co-Culture of Human Gingival Fibroblasts and Umbilical Vein Endothelial Cells

(Kesan FGF-2 dan PDGF-BB ke atas Ko-Kultur Sel Fibroblas Gingiva dan Sel Endotelial Vena Umbilikal Manusia)

 

NASAR UM MIN ALLAH1, ZURAIRAH BERAHIM1*, AZLINA AHMAD1 & KANNAN THIRUMULU PONNURAJ1,2

 

1School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan Darul Naim, Malaysia

 

2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan Darul Naim, Malaysia

 

Diserahkan: 2 Oktober 2019/Diterima: 27 Mac 2020

 

ABSTRACT

Gingival recession can be treated by root coverage procedure with tissue graft. The ideal gingiva graft should mimic the properties of the native gingiva. Gingival fibroblasts are main cells that reside in human gingiva, while the endothelial cells are the basis for blood vessel formation. The co-culture of these cells, will help in better understanding of gingival tissue regeneration. This study was aimed to determine the effects of fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) on a co-culture of human gingival fibroblasts (HGFs) and human umbilical vein endothelial cells (HUVECs). In this in vitro experimental study, the medium for the establishment of monolayer and co-culture of these cells were first optimised. Then, the optimal concentrations of these growth factors were determined by assessing the cell viability using MTT assay. Next, to study the stimulatory effect of these growth factors, both HGF and HUVECs were co-cultured and gene expression analysis for fibroblast and angiogenic biomarkers was assessed using Real-Time RT-PCR. Cell viability assay showed that the effect of FGF-2 on HGF was dose-dependent and was optimum at a concentration of 5 ng mL-1, while that of PDGF-BB on HUVEC was optimum at a concentration of 20 ng mL-1. The stimulatory effect of FGF-2 and PDGF-BB was further supported by the Real-Time PCR results which showed that there is a significant expression of VIM, COL1A1, FN, CD31, VE-Cadherin, andvWF in the treatment group of both cells after three days of co-culture experiment, compared to control group. This study indicates a possible synergistic effect of FGF-2 and PDGF-BB growth factors in a co-culture of HGF and HUVEC leading to proangiogenic activity.

 

Keywords: Co-culture; FGF-2; HUVEC; PDGF-BB; tissue engineering

 

ABSTRAK

Penyusutan gingiva boleh dirawat menggunakan prosedur penutupan akar bersama geraf tisu. Geraf tisu gingiva yang unggul mestilah hampir menyerupai tisu gingiva yang asli. Fibroblas gingiva adalah sel utama yang terdapat dalam gingiva manusia, manakala sel endotelium adalah asas untuk pembentukan salur darah. Ko-kultur sel-sel ini akan membantu dalam pemahaman yang lebih baik mengenai pertumbuhan semula tisu gingiva. Kajian ini bertujuan untuk menentukan kesan faktor pertumbuhan fibroblas (FGF-2) dan faktor terbitan platlet (PDGF-BB) ke atas ko-kultur sel fibroblas gingiva (HGFs)  dan  sel endotelium vena umbilikus manusia (HUVECs). Di dalam uji kajiin vitro ini, media untuk memantapkan kultur sel satu lapisan dan ko-kultur kedua-dua jenis sel tersebut dioptimumkan terlebih dahulu. Berikutan itu kepekatan yang terbaik bagi kedua-dua faktor pertumbuhan ditentukan dengan menilai kebolehidupan sel menggunakan ujian MTT. Seterusnya, untuk mengkaji kesan perangsangan faktor pertumbuhan ini, kedua-dua HGFs dan HUVECs telah menjalani ko-kultur dan analisis pengekspresan gen untuk biopenanda fibroblas dan angiogenik telah dilakukan dengan masa nyata RT-PCR. Asai kebolehidupan sel menunjukkan bahawa kesan FGF-2 ke atas HGF adalah mengikut dos dan optimum pada kepekatan 5 ng mL-1, manakala kesan PDGF-BB ke atas HUVEC adalah optimum pada kepekatan 20 ng mL-1. Kesan rangsangan FGF-2 dan PDGF-BB turut disokong oleh keputusan masa nyata PCR yang menunjukkan pengekspresan VIM, COL1A1, FN, CD31, VE-Cadherin dan vWF yang signifikan  antara kumpulan yang dirawat untuk kedua-dua jenis sel selepas 3 hari menjalani ko-kultur berbanding kumpulan kawalan. Kajian ini menunjukkan bahawa terdapat kemungkinan kesan sinergistik antara faktor pertumbuhan  FGF-2 dan PDGF-BB di dalam ko-kultur sel HGF dan HUVEC yang mengarah kepada aktiviti proangiogenik.

 

Kata kunci: FGF-2; HUVEC; kejuruteraan tisu; ko-kultur; PDGF-BB

 

RUJUKAN

Albelda, S.M. & Buck, C.A. 1990. Integrins and other cell adhesion molecules. FASEB J. 4(11) :2868-2880.

Bachetti, T. & Morbidelli, L. 2000. Endothelial cells in culture: A model for studying vascular functions. Pharmacol. Res. 42(1): 9-19.

Battegay, E.J., Rupp, J., Iruela-Arispe, L., Sage, E.H. & Pech, M. 1994. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell Biol. 125(4): 917-928.

Cao, R., Brakenhielm, E., Pawliuk, R., Wariaro, D., Post, M.J., Wahlberg, E., Leboulch, P. & Cao, Y. 2003. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9(5): 604-613.

Cheung, J.W., Jain, D., McCulloch, C.A. & Santerre, J.P. 2015. Pro-angiogenic character of endothelial cells and gingival fibroblasts cocultures in perfused degradable polyurethane scaffolds. Tissue Eng. Part A 21(9-10): 1587-1599.

Choong, C.S., Hutmacher, D.W. & Triffitt, J.T. 2006. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng. 12(9): 2521-2531.

Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P.L., Soares, R. & Guerreiro, S.G. 2015. Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng. Part A 21(5-6): 1055-1065.

Gallagher, S.I. & Matthews, D.C. 2017. Acellular dermal matrix and subepithelial connective tissue grafts for root coverage: A systematic review. J. Indian Soc. Periodontol. 21(6): 439-448.

Goncharov, N.V., Nadeev, A.D., Jenkins, R.O. & Avdonin, P.V. 2017. Markers and biomarkers of endothelium: When something is rotten in the state. Oxid. Med. Cell Longev.2017: Article ID. 9759735.

Jati, A.S., Furquim, L.Z. & Consolaro, A. 2016. Gingival recession: Its causes and types, and the importance of orthodontic treatment.  Dental Press J. Orthod. 21(3): 18-29.

Kang, S.S., Gosselin, C., Ren, D. & Greisler, H.P. 1995. Selective stimulation of endothelial cell proliferation with inhibition of smooth muscle cell proliferation by fibroblast growth factor-1 plus heparin delivered from fibrin glue suspensions. Surgery 118(2): 280-287.

Kolbe, M., Xiang, Z., Dohle, E., Tonak, M., Kirkpatrick, C.J. & Fuchs, S. 2011. Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells.  Tissue Eng. Part A 17(17-18): 2199-2212.

Li, J., Wei, Y., Liu, K., Yuan, C., Tang, Y.J., Quan, Q.L., Chen, P., Wang, W., Hu, H. & Yang, L. 2010. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc. Res. 80(1): 10-17.

Manimegalai, A, Rao, S. & Ravindran, D. 2016. Fibronectin in periodontal health and disease. J. Orofac. Sci. 8(1): 12-15.

Marx, M., Perlmutter, R.A. & Madri, J.A. 1994. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J. Clin. Invest. 93(1): 131-139.

Minardi, S., Pandolfi, L., Taraballi, F., Wang, X., De Rosa, E., Mills, Z.D., Liu, X., Ferrari, M.  & Tasciotti, E. 2017. Enhancing vascularization through the controlled release of platelet-derived growth factor-BB. ACS Appl. Mater. Interfaces 9(17): 14566-14575.

Mohd Nor, N.H., Berahim, Z., Azlina, A., Mokhtar, K.I. & Kannan, T.P. 2017. Identification and characterization of intraoral and dermal fibroblasts revisited. Curr. Stem Cell Res. Ther. 12(8): 675-681.

Moraschini, V. & Barboza Edos, S. 2016. Use of platelet-rich fibrin membrane in the treatment of gingival recession: A systematic review and meta-analysis. J. Periodontol. 87(3): 281-290.

Nishimura, F. &Terranova, V.P. 1996. Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. J. Dent. Res. 75(4): 986-992.

Nissen, L.J., Cao, R., Hedlund, E.M., Wang, Z., Zhao, X., Wetterskog, D., Funa, K., Brakenhielm, E. & Cao, Y. 2007. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.  J. Clin. Invest. 117(10): 2766-2777.

Palmon, A., Roos, H., Edel, J., Zax, B., Savion, N., Grosskop, A. & Pitaru, S. 2000. Inverse dose- and time-dependent effect of basic fibroblast growth factor on the gene expression of collagen type I and matrix metalloproteinase-1 by periodontal ligament cells in culture. J. Periodontol. 71(6): 974-980.

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR.  Nucleic Acids Res. 29(9): e45.

Plumb, J.A., Milroy, R. & Kaye, S.B. 1989. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 49(16): 4435-4440.

Renaud, J. & Martinoli, M.G. 2016. Development of an insert co-culture system of two cellular types in the absence of cell-cell contact.  J. Vis. Exp.doi: 10.3791/54356.

Shimizu, T., Kinugawa, K., Yao, A., Sugishita, Y., Sugishita, K., Harada, K., Matsui, H., Kohmoto, O., Serizawa, T. & Takahashi, T. 1999. Platelet-derived growth factor induces cellular growth in cultured chick ventricular myocytes 1. Cardiovasc. Res. 41(3): 641-653.

Shkreta, M., Atanasovska-Stojanovska, A., Dollaku, B. & Belazelkoska, Z. 2018. Exploring the gingival recession surgical treatment modalities: A literature review. Open Access Maced. J. Med. Sci. 6(4): 698-708.

Song, H.G., Rumma, R.T., Ozaki, C.K., Edelman, E.R. & Chen, C.S. 2018. Vascular tissue engineering: Progress, challenges, and clinical promise. Cell Stem Cell 22(3): 340-354.

Sufen, G., Xianghong, Y., Yongxia, C. & Qian, P. 2011. bFGF and PDGF-BB have a synergistic effect on the proliferation, migration and VEGF release of endothelial progenitor cells. Cell Biol. Int. 35(5): 545-551.

Tanimoto, K., Ohkuma, S., Tanne, Y., Kunimatsu, R., Hirose, N., Mitsuyoshi, T., Yoshimi, Y., Su, S. & Tanne, K. 2013. Effects of bFGF on the modulation of apoptosis in gingival fibroblasts with different host ages. Int. J. Dent. 2013: Article ID. 619580.

Traore, M.A. & George, S.C. 2017. Tissue engineering the vascular tree. Tissue Eng. Part B Rev. 23(6): 505-514.

Um Min Allah, N., Berahim, Z., Ahmad, A. & Kannan, T.P. 2017. Biological interaction between human gingival fibroblasts and vascular endothelial cells for angiogenesis: A co-culture perspective. Tissue Eng. Regen. Med. 14(5): 495-505.

Walters, J.D., Nakkula, R.J. & Maney, P. 2005. Modulation of gingival fibroblast minocycline accumulation by biological mediators. J. Dent. Res. 84(4): 320-323.

Zetter, B.R. & Antoniades, H.N. 1979. Stimulation of human vascular endothelial cell growth by a platelet-derived growth factor and thrombin. J. Supramol. Struct. 11(3): 361-370.

Zuhr, O., Baumer, D. & Hurzeler, M. 2014. The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: Critical elements in design and execution. J. Clin. Periodontol. 41(Suppl 15): S123-S142.

 

*Pengarang untuk surat-menyurat; email: zurairah@usm.my

   

 

 

sebelumnya