Sains Malaysiana 49(8)(2020): 1853-1863

http://dx.doi.org/10.17576/jsm-2020-4908-08

 

A Review on the Association of Bacteria with Stingless Bees

(Suatu Ulasan tentang Perkaitan Bakteria dengan Kelulut)

 

MOHAMAD SYAZWAN NGALIMAT1,2, RAJA NOOR ZALIHA RAJA ABD RAHMAN1,2, MOHD TERMIZI YUSOF2, AMIR SYAHIR AMIR HAMZAH1,3, NORHASNIDA ZAWAWI4,5 & SURIANA SABRI1,2*

 

1Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

4Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

5Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 2 April 2019/Diterima: 25 Mac 2020

 

Abstract

Most cultivable microbes associated with stingless bees are bacteria. Studies about bacteria related to stingless bee colonies were only limited to bacterial isolation and identification, while a few studies consider their potential applications. Information on their biological roles and functions are scarce. Bacteria classified under the genera Bacillus, Streptomyces, and Lactobacillus are commonly associated with stingless bee colonies. They have been hypothesized to contribute to the formation and enhancement of antimicrobial activities of bee products such as honey and bee bread. There is now sizeable evidence that the microflora of bees can be used as biocontrol agent, potential probiotic, as well as producer of antimicrobial compounds and enzymes. The aim of this review was to stimulate a generation of further research on the enormous potential of the bacteria associated with stingless bees, their contributions and potential applications especially in medical and pharmaceutical uses.

 

Keywords: Bacteria; bee bread; bees and bacterial interaction; honey; stingless bee

 

Abstrak

Kebanyakan mikrob yang bersekutu dengan kelulut adalah bakteria. Kajian mengenai bakteria yang berkaitan dengan koloni kelulut hanya terhad kepada pemencilan dan pengecaman bakteria, sementara hanya beberapa kajian menganggap potensi aplikasi mereka. Maklumat mengenai peranan dan fungsi biologi mereka adalah terhad. Bakteria dikelaskan di bawah genus Bacillus, Streptomyces dan Lactobacillus biasanya dikaitkan dengan koloni kelulut. Mereka telah dihipotesiskan untuk menyumbang kepada pembentukan dan peningkatan aktiviti antimikrob produk-produk lebah seperti madu dan roti debunga. Terdapat bukti bahawa mikroflora lebah boleh digunakan sebagai agen kawalan bio, potensi probiotik serta pengeluar sebatian antimikrob dan enzim. Matlamat ulasan kajian ini adalah untuk merangsang satu generasi penyelidikan lanjut tentang potensi bakteria yang berkait dengan kelulut, sumbangan dan potensi mereka khususnya dalam penggunaan perubatan dan farmaseutik.

 

Kata kunci: Bakteria; interaksi lebah dan bakteria; kelulut; madu; roti debunga

 

RUJUKAN

 Abdullah, M.T., Ali, N.Y. & Suleman, P. 2008. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection 27(10): 1354-1359.

Alippi, A.M. & Reynaldi, F.J. 2006. Inhibition of the growth of Paenibacillus larvae, the causal agent of American Foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. Journal of Invertebrate Pathology 91(3): 141-146.

Amin, F.A.Z., Sabri, S., Ismail, M., Chan, K.W., Ismail, N., Mohd Esa, N., Mohd Lila, M.A. & Zawawi, N. 2020. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. International Journal of Environmental Research and Public Health 17(1): 278.

Amin, F.A.Z., Sabri, S., Mohammad, S.M., Ismail, M., Chan, K.W., Ismail, N., Mohd, E.N. & Zawawi, N. 2018. Therapeutic properties of stingless bee honey in comparison with European bee honey. Advances in Pharmacological Sciences 2018: Article ID. 6179596.

Amore, A., Parameswaran, B., Kumar, R., Birolo, L., Vinciguerra, R., Marcolongo, L., Ionata, E., La Cara, F., Pandey, A. & Faraco, V. 2015. Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. Journal of Chemical Technology and Biotechnology 90(3): 573-581.

Anderson, K.E., Sheehan, T.H., Eckholm, B.J., Mott, B.M. & DeGarndi-Hoffman, G. 2011. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux 58: 431-444.

Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B. & Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories 8(1): 63.

Arrebola, E., Jacobs, R. & Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology 108(2): 386-395.

Audisio, M.C., Torres, J.M., Sabate, D.C., Ibarguren, C. & Apella, M.C. 2011. Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiological Research 166: 1-13.

Bankova, V. 2005. Recent trends and important developments in propolis research. Evidence-Based Complementary and Alternative Medicine 2(1): 29-32.

Barth, O.M., Freitas, A.S., Sousa, G.L. & Almeida-Muradian, L.B. 2013. Pollen and physicochemical analysis of Apis and Tetragonisca (Apidae) honey. Interciencia 38(4): 280-285.

Bassindale, R. & Matthews, L.H. 1955. The biology of the stingless bee Trigonu (Hypotrigona) gribodoi magretti (meliponidae). Proceedings of the Zoological Society of London 125: 49-62.

Burdock, G.A. 1998. Review of the biological properties and toxicity of bee propolis (propolis). Food and Chemical Toxicology 36(4): 347-363.

Burgett, D.M. 1974. Glucose oxidase: A food protective mechanism in social hymenoptera. Annals of the Entomological Society of America 67(4): 545-546.

Butler, È., Alsterfjord, M., Olofsson, T.C., Karlsson, C., Malmström, J. & Vásquez, A. 2013. Proteins of novel lactic acid bacteria from Apis mellifera mellifera: An insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiology 13: 235.

Campos, J.F., Santos, U.P.D., Rocha, P.D.S.D., Damião, M.J., Balestieri, J.B.P., Cardoso, C.A.L., Paredes-Gamero, E.J., Estevinho, L.M., de Picoli Souza, K. & Santos, E.L.D. 2015. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evidence-Based Complementary and Alternative Medicine 2015: Article ID. 296186.

Cano, R.J. & Borucki, M.K. 1995. Revival and identification of bacterial spores in 25- to 40-million-year-old dominican amber. Science 268(5213): 1060-1064.

Choudhari, M.K., Punekar, S.A., Ranade, R.V. & Paknikar, K.M. 2012. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India. Journal of Ethnopharmacology 141(1): 363-367.

Cochrane, S.A. & Vederas, J.C. 2014. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Medicinal Research Reviews 36(1): 4-31.

Coelho, G.R., Figueiredo, C.A., Negri, G., Fernandes-Silva, C.C., Villar, K.D.S., Badari, J.C., de Oliveira, M.I., Barbosa, T.F., Taniwaki, N.N., Namiyama, G.M. & Mendonça, R.Z. 2018. Antiviral activity of geopropolis extract from Scaptotrigona aff. postica against rubella virus. Journal of Food Research 7(6): 91-106.

Coelho, G.R., de Senna Villar, K., Figueiredo, C.A., Badari, J.C., Mendonça, R.M.Z., Oliveira, M.I., Curti, S.P., Silva, P.E.S., Do Nascimento, R.M. & Mendonça, R.Z. 2014. Antiviral effects of Scaptotrigona postica propolis and their fractions. BMC Proceedings 8(Suppl 4): P63.

Costa, R.A.C. & Cruz-Landim, C. 2005. Hydrolases in the hypopharyngeal glands of workers of Scaptotrigona postica and Apis mellifera (Hymenoptera, Apinae). Genetics and Molecular Research 4(4): 616-623.

Cruz-Landim, D. & Serrão, J.E. 1996. Ultrastructure and histochemistry of the mineral concretions in the midgut of bees (Hymenoptera: Apidae)1. Netherlands Journal of Zoology 47(1): 21-29.

DeGrandi-Hoffman, G., Eckholm, B.J. & Huang, M.H. 2013. A comparison of bee bread made by Africanized and European honey bees (Apis Mellifera) and its effects on hemolymph protein titers. Apidologie 44: 52-63.

Díaz, S., Urbano, S.D.S., Caesar, L., Blochtein, B., Sattler, A., Zuge, V. & Haag, K.L. 2016. Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. Journal of Invertebrate Pathology 143: 35-39.

Disayathanoowat, T., Yoshiyama, M., Kimura, K. & Chantawannakul, P. 2012. Isolation and characterization of bacteria from the midgut of the asian honey bee (Apis cerana indica). Journal of Apicultural Research 51(4): 312-319.

Engel, P., Martinson, V.G. & Moran, N.A. 2012. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America 109(27): 11002-11007.

Evans, J.D. & Armstrong, T. 2005. Inhibition of the American foulbrood bacterium, Paenibacillus larvae larvae, by bacteria isolated from honey bees. Journal of Apicultural Research 44(4): 168-171.

Filannino, P., Di Cagno, R., Addante, R., Pontonio, E. & Gobbetti, M. 2016. Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. bee gut: Phenolic acids as external electron acceptors. Applied and Environmental Microbiology 82(23): 6899-6911.

Forsgren, E., Olofsson, T.C., Vasquez, A. & Fries, I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honeybee larvae. Apidologie 41: 99-108.

Garedew, A., Schmolz, E. & Lamprecht, I. 2003. The antimicrobial activity of honey of the stingless bee Trigona spp. Journal of Apicultural Science 47(1): 37-49.

Georgieva, K., Popova, M., Dimitrova, L., Trusheva, B., Phuong, D.T.L., Lien, N.T.P., Najdenski, H. & Bankova, V. 2019. Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS ONE 14(4): e0216074.

Gilliam, M. 1997. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters 155: 1-10.

Gilliam, M., Roubik, D.W. & Lorenz, B.J. 1990. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21(2): 89-97.

Gilliam, M., Buchmann, S.L., Lorenz, B.J. & Roubik, D.W. 1985. Microbiology of the larval provisions of the stingless bee, Trigona hypogea, an obligate necrophage. Biotropica 17(1): 28-31.

Goodfellow, M., Williams, S.T. & Alderson, G. 1986. Transfer of Chainia species to the genus Streptomyces with emended description of species. Systematic and Applied Microbiology 8(1-2): 55-60.

Graaf, D.C.D., Alippi, A.M., Brown, M., Evans, J.D., Feldlaufer, M., Gregorc, A., Hornitzky, M., Pernal, S.F., Schuch, D.M.T., Titĕra, D. & Tomkies, V. 2006. Diagnosis of American foulbrood in honey bees: A synthesis and proposed analytical protocols. Letters in Applied Microbiology 43(6): 583-590.

Grady, E.N., MacDonald, J., Liu, L., Richman, A. & Yuan, Z.C. 2016. Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories 15(1): 203.

Harwood, C.R., Mouillon, J.M., Pohl, S. & Arnau, J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews42(6): 721-738.

Haydak, M.H. 1970. Honey bee nutrition. Annual Review of Entomology 15: 143-156.

Herbert, E.W. & Shimanuki, H. 1978. Chemical composition and nutrient value of bee-collected and bee-stored pollen. Apidologie 9(1): 33-40.

Human, H. & Nicolson, S.W. 2006. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67: 1486-1492.

Inglis, G.D, Sigler, L. & Goette, M.S. 1993. Aerobic microorganisms associated with Alfalfa leafcutter bees (Megachile rotundata). Microbial Ecology 26(2): 125-143.

Jalil, A.H. 2014. Beescape for Meliponines: Conservation of Indo-Malayan Stingless Bees. Singapore: Partridge.

Kadhim, M.J., Łoś, A., Olszewski K. & Borsuk G. 2018. Propolis in livestock nutrition. Entomology, Ornithology and Herpetology: Current Research 7(1): 1-4.

Kim, P.I. & Chung, K.C.  2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters 234(1): 177-183.

Kirk, O., Borchert, T.V. & Fuglsang, C.C. 2002. Industrial enzyme applications. Current Opinion in Biotechnology 13(4): 345-351.

Klepzig, K.D., Adams, A.S., Handelsman, J. & Raffa, K.F. 2009. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology 38(1): 67-77.

Komosinska-Vassev, K., Olczyk, P., Kazmierczak, J., Mencner, L. & Olczyk, K. 2015. Bee pollen: Chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine 2015: 1-6.

Krell, R. 1996. Value-added Products from Beekeeping. FAO Agricultural Services Bulletin No. 124. Rome, Italy: Food and Agriculture Organization of the United Nations.

Kroiss, J., Kaltenpoth, M., Schneider, B., Schwinger, M.G., Hertweck, C., Maddula, R.K., Strohm, E. & Svatos, A. 2010. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chemical Biology 6(4): 261-263.

Küstenmacher, M. 1911. Propolis. Berichte der Deutshen Pharmacologische Gesellschaі 21: 65-92.

Lani, M.N., Zainudin, A.H., Razak, S.B.A., Mansor, A. & Hassan, Z. 2017. Microbiological quality and pH changes of honey produced by stingless bees, Heterotrigona itama and Geniotrigona thoracica stored at ambient temperature. Malaysian Applied Biology 46(3): 89-96.

Lavinas, F.C., Macedo, E.H.B., Sá, G.B., Amaral, A.C.F., Silva, J.R., Azevedo, M.M., Vieira, B.A., Domingos, T.F.S., Vermelho, A.B., Carneiro, C.S. & Rodrigues, I.A. 2019. Brazilian stingless bee propolis and geopropolis: Promising sources of biologically active compounds. Revista Brasileira de Farmacognosia 29(3): 389-399.

Leonhardt, S.D. & Kaltenpoth, M. 2014. Microbial communities of three sympatric Australian stingless bee species. PLoS ONE 9(8): e105718.

Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q. & Wang, Y. 2015. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology 6: 1-15.

Lončar, N., Gligorijević, N., Božić, N. & Vujčić, Z. 2014. Congo red degrading laccases from Bacillus amyloliquefaciens strains isolated from salt spring in Serbia. International Biodeterioration and Biodegradation 91: 18-23.

Low, N.H., Nelson, D.L. & Sporns, P. 1988. Carbohydrate analysis of Western Canadian honeys and their nectar sources to determine the origin of honey oligosaccharides. Journal of Apicultural Research 27(4): 245-251.

Machado, J.O. 1971. Symbiosis among Brazilian social bees (Meliponinae, Apidae) and a species of bacteria. Ciência e Cultura 23: 625-633.

Mari, M., Guizzardi, M., Brunelli, M. & Folchi, A. 1996. Postharvest biological control of grey mould (Botrytis cinerea pers.: fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Protection 15(8): 699-705.

Menegatti, C., Melo, W.G.D.P., Carrão, D.B., De Oliveira, A.R.M., Do Nascimento, F.S., Lopes, N.P. & Pupo, M.T. 2018. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens. Journal of Chemical Ecology 44(12): 1158-1169.

Menezes, C., Vollet-Neto, A., Contrera, F.A.F.L., Venturieri, G.C. & Imperatriz-Fonseca, V.L. 2013. The role of useful microorganisms to stingless bees and stingless beekeeping. In Pot-Honey: A Legacy of Stingless Bees. New York: Springer. pp. 153-171.

Michener, C.D. 2013. The meliponini. In Pot-Honey: A Legacy of Stingless Bees. New York: Springer. pp. 3-17.

Michener, C.D. 1974. The Social Behavior of the Bees: A Comparative Study. England: Harvard University Press.

Morais, P.B., Calaça, P.S.S.T. & Rosa, C.A. 2013. Microorganisms associated with stingless bees. In Pot-Honey: A Legacy of Stingless Bees.New York: Springer. pp. 173-186.

Ndlovu, T., Rautenbach, M., Khan, S. & Khan, W. 2017. Variants of lipopeptides and glycolipids produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa cultured in different carbon substrates. AMB Express 7(1): 109.

Ngalimat, M.S., Raja Abd. Rahman, R.N.Z., Yusof, M.T., Syahir, A. & Sabri, S. 2019. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. Peer J. 7: e7478.

Nicholson, W.L. 2002. Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences 59(1): 410-416.

Olaitan, P.B., Adeleke, O.E. & Iyabo, O.O. 2007. Honey: A reservoir for microorganisms and an inhibitory. African Health Sciences 7(3): 159-165.

Olofsson, T.C., Butler, È., Markowicz, P., Lindholm, C., Larsson, L. & Vásquez, A. 2016. Lactic acid bacterial symbionts in honeybees - An unknown key to honey's antimicrobial and therapeutic activities. International Wound Journal 13(5): 668-679.

Olofsson, T.C. & Vásquez, A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology 57(4): 356-363.

Paludo, C.R., Ruzzini, A.C., Silva-Junior, E.A., Pishchany, G., Currie, C.R., Nascimento, F.S., Kolter, R.G., Clardy, J. & Pupo, M.T. 2016. Whole-genome sequence of Bacillus sp. SDLI1, isolated from the social bee Scaptotrigona depilis. Genome Announcements 4(2): e00174-16.

Porrini, M.P., Audisio, M.C., Sabaté, D.C., Ibarguren, C., Medici, S.K., Sarlo, E.G., Garrido, P.M. & Eguaras, M.J. 2010. Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitology Research 107(2): 381-388.

Promnuan, Y., Kudo, T. & Chantawannakul, P. 2009. Actinomycetes isolated from beehives in Thailand. World Journal of Microbiology and Biotechnology 25(9): 1685-1689.

Pucciarelli, A.B., Schapovaloff, M.E., Kummritz, S., Señuk, I.A., Brumovsky, L.A. & Dallagnol, A.M. 2014. Microbiological and physicochemical analysis of Yateí (Tetragonisca angustula) honey for assessing quality standards and commercialization. Revista Argentina de Microbiología 46(4): 325-332.

Quezada-Euán, J.J.G. 2018. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage. Switzerland: Springer, Cham.

Reynaldi, F.J., De Giusti, M.R. & Alippi, A.M. 2004. Inhibition of the growth of Ascosphaera apis by Bacillus and Paenibacillus strains isolated from honey. Revista Argentina de Microbiologia 36(1): 52-55.

Roowi, S., Jaafar, N.A.I. & Abdul Mubdi, N.E. 2016. Madu lebah kelulut dan khasiatnya. In Lebah Kelulut Malaysia Biologi dan Penternakan. Kuala Lumpur: Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI). pp. 71-85.

Rosa, C.A., Lachance, M.A., Silva, J.O., Teixeira, A.C.P., Marini, M.M., Antonini, Y. & Martins, R.P. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4(3): 271-275.

Roubik, D.W. 2006. Stingless bee nesting biology. Apidologie 37: 124-143.

Sachs, J.L., Essenberg, C.J. & Turcotte, M.M. 2011. New paradigms for the evolution of beneficial infections. Trends in Ecology and Evolution 26(4): 202-209.

Saengsanga, T., Siripornadulsil, W. & Siripornadulsil, S. 2016. Molecular and enzymatic characterization of alkaline lipase from Bacillus amyloliquefaciens E1PA isolated from lipid-rich food waste. Enzyme and Microbial Technology 82: 23-33.

Sanz, S., Gradillas, G., Jimeno, F., Perez, C. & Juan, T. 1995. Fermentation problem in Spanish north-coast honey. Journal of Food Protection 58(5): 515-518.

Saraiva, M.A., Zemolin, A.P.P., Franco, J.L., Boldo, J.T., Stefenon, V.M., Triplett, E.W., De Oliveira Camargo, F.A. & Roesch, L.F.W. 2015. Relationship between honeybee nutrition and their microbial communities. Antonie van Leeuwenhoek 107: 921-933.

Setlow, P. 2014. Germination of spores of Bacillus species: What we know and do not know. Journal of Bacteriology 196(7): 1297-1305.

Sgariglia, M.A., Vattuone, M.A., Vattuone, M.M.S., Soberón, J.R. & Sampietro, D.A. 2010. properties of honey from Tetragonisca angustula fiebrigi and Plebeia wittmanni of Argentina. Apidologie 41: 667-675.

Shanks, J.L., Haigh, A.M., Riegler, M. & Spooner-Hart, R.N. 2017. First confirmed report of a bacterial brood disease in stingless bees. Journal of Invertebrate Pathology 144: 7-10.

Shehu, A., Ismail, S., Rohin, M.A.K., Harun, A., Aziz, A.A. & Haque, M. 2016. Antifungal properties of Malaysian Tualang honey and stingless bee propolis against Candida albicans and Cryptococcus neoformans. Journal of Applied Pharmaceutical Science 6(2): 44-50.

Sinacori, M., Francesca, N., Alfonzo, A., Cruciata, M., Sannino, C., Settanni, L. & Moschetti, G. 2014. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiology 38(1): 284-294.

Singh, D., Yadav, D.K., Chaudhary, G., Rana, V.S. & Sharma, R.K. 2016a. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology and Microbiology 7(1): 1-6.

Singh, R., Kumar, M., Mittal, A. & Mehta, P.K. 2016b. Microbial enzymes: Industrial progress in 21st century. 3 Biotech 6(174): 1-15.

Snowdon, J.A. & Cliver, D.O. 1996. Microorganisms in honey. International Journal of Food Microbiology 31(1-3): 1-26.

Souza, B.D.A., Alves, R.M.D.O. & Carvalho, C.A.L.D. 2007. Nest architecture diagnosis of Oxytrigona tataira (Smith, 1863) (Hymenoptera: Meliponinae). Biota Neotropica 7(2): 83-86.

Souza, R.C.S., Yuyama, L.K.O., Aguiar, J.P.L. & Oliveira, F.P.M. 2004. Nutritional value of honey and pollen of stingless bees of the Amazonian region. Acta Amazonica 34(2): 333-336.

Tajabadi, N., Mardan, M., Saari, N., Mustafa, S., Bahreini, R. & Manap, M.Y.A. 2013. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazilian Journal of Microbiology 44(3): 717-722.

Teixeira, A.C., Marini, M.M., Nicoli, J.R., Antonini, Y., Martins, R.P., Lachance, M.A. & Rosa, C.A. 2003. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. International Journal of Systematic and Evolutionary Microbiology 53(1): 339-343.

Vasquez, A. & Olofsson, T.C. 2009. The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research 48(3): 189-195.

Vásquez, A., Forsgren, E., Fries, I., Paxton, R.J., Flaberg, E., Szekely, L. & Olofsson, T.C. 2012. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 7(3): e33188.

Vásquez, A., Olofsson, T.C. & Sammataro, D. 2009. A scientific note on the lactic acid bacterial flora in honeybees in the USA - A comparison with bees from Sweden. Apidologie 40(1): 26-28.

Wagh, V.D. 2013. Propolis: A wonder bees product and its pharmacological potentials. Advances in Pharmacological Sciences 2013: Article ID. 308249.

Wang, H., Yang, L., Ping, Y., Bai, Y., Luo, H., Huang, H. & Yao, B. 2016. Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS ONE 11(1): e0146373.

Wang, M., Zhao, W.Z., Xu, H., Wang, Z.W. & He, S.Y. 2015. Bacillus in the guts of honey bees (Apis mellifera; Hymenoptera: Apidae) mediate changes in amylase values. European Journal of Entomology 112(4): 619-624.

White, J.W. & Maher, J. 1953. Transglucosidation by honey invertase. Archives of Biochemistry and Biophysics 42(2): 360-367.

Wille, A. 1983. Biology of the stingless bees. Annual Review of Entomology 28(1): 41-64.

Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R. & Gao, X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports 5: 1-9.

Yaacob, S.N.S., Huyop, F., Ibrahim, R.K.R. & Wahab, R.A. 2018. Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. Journal of Apicultural Research 57(3): 395-405.

Ye, M., Sun, L., Yang, R., Wang, Z. & Qi, K. 2017. The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its application to goose feed. Royal Society Open Science 4(10): 171012.

Yoshiyama, M. & Kimura, K. 2009. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology 102(2): 91-96.

Yuan, J., Raza, W., Shen, Q. & Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology 78(16): 5942-5944.

Zhao, P., Quan, C., Wang, Y., Wang, J. & Fan, S. 2014. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of Basic Microbiology 54(5): 448-456.

Zhao, X., Zhou, Z.J., Han, Y., Wang, Z.Z., Fan, J. & Xiao, H.Z. 2013. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiological Research 168(9): 598-606.

 

*Pengarang untuk surat-menyurat; email: suriana@upm.edu.my

 

   

 

 

sebelumnya