Sains Malaysiana 49(3)(2020): 661-669

http://dx.doi.org/10.17576/jsm-2020-4903-21

 

Influence Mechanism of Epoxy Resin and Curing Agent on High-Temperature Performance of Asphalt

(Mekanisme Pengaruh Resin Epoksi dan Agen Pengawetan pada Prestasi Suhu Tinggi Asfalt)

 

MINGXING GAO1*, YANHUA XUE1, PENG GUAN2 & FEILONG YUAN1

 

1College of Energy and Transportation Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China

 

2President of Hongrui Road and Bridge Engineering Science and Technology Research Institute, Hinggan League, Inner Mongolia, 137400, China

 

Diserahkan: 19 September 2019/Diterima: 4 Disember 2019

 

Abstract

To deeply show the internal reasons for the effects of epoxy resin and curing agent on the high-temperature performance of asphalt, nine kinds of asphalt with different content of epoxy resin and curing agent were prepared. On the premise of ensuring that the softening point, penetration and ductility of epoxy asphalt no attenuation, the dynamic shear rheology test and Saybolt viscosity test were used to examine the rutting factor (G*/sin δ), complex shear modulus (G*), phase angle (δ), and viscosity of asphalt with different epoxy resin and curing agent contents. With the help of fluorescence microscopy, microscopic morphology was analyzed, and the micro-image was further analyzed quantitatively by using 3Dsurface and particle statistics. The results show that adding epoxy resin and curing agent into asphalt can significantly improve the rutting factor and complex shear modulus of asphalt and reduce the phase angle and the viscosity growth rate of asphalt changed from fast to slow. Fluorescence and 3Dsurface imaging results indicate when the epoxy resin and the curing agent are uniformly distributed and forms microflocculent structures, the epoxy resin can fully swell in asphalt, and the fluorescence intensity is uniform. The statistical analysis of particles shows that the improvement in high-temperature performance of asphalt by epoxy resin and curing agent results from the distribution of particle area above 26.7346 μm2. The high-temperature performance of epoxy asphalt is optimal when the content of epoxy resin and curing agent is 6 %.

 

Keywords: 3Dsurface; fluorescence; micromorphology; particles of statistical

 

Abstrak

Dalam usaha secara mendalam untuk menunjukkan sebab dalaman kesan resin epoksi dan agen pengawetan pada prestasi suhu tinggi Asfalt, sembilan jenis daripada asfalt dengan kandungan resin epoksi dan agen pengawetan telah disediakan. Dalam usaha untuk memastikan takat pelembutan, penembusan dan kemuluran epoksi asfalt tiada pengecilan, ujian reologi ricih dinamik dan ujian kelikatan Saybolt digunakan untuk memeriksa faktor rut (G*/sinδ), modulus ricih kompleks (G*), sudut fasa (δ) dan kelikatan asfalt resin epoksi berbeza serta kandungan agen pengawetan. Dengan bantuan mikroskopi pendarfluor, morfologi mikroskopi telah dianalisis dan imej mikro dianalisis lebih lanjut secara kuantitif menggunakan statistik 3Dsurface dan statistik zarah. Keputusan menunjukkan bahawa penambahan resin epoksi dan agen pengawetan ke dalam asfalt boleh menambah baik secara signifikan faktor rut dan modulus ricih kompleks asfalt serta mengurangkan sudut fasa dan kadar pertumbuhan kelikatan asfalt berubah daripada laju kepada perlahan. Pendarfluor dan keputusan pengimejan 3Dsurface menunjukkan apabila resin epoksi dan agen pengawetan diagihkan secara seragam dan membentuk struktur mikroberflokulasi, resin epoksi boleh membengkak sepenuhnya dalam asfalt dan keamatan kependarfluoran adalah seragam. Analisis statistik zarah menunjukkan pembaikan dalam prestasi suhu tinggi asfalt oleh resin epoksi dan agen pengawetan hasil daripada taburan kawasan zarah di atas 26.7346 μm2. Prestasi suhu tinggi asfalt epoksi adalah optimum apabila kandungan resin epoksi dan agen pengawetan adalah 6%.

 

Kata kunci: 3Dsurface; mikromorfologi; pendarfluor; zarah statistik

 

RUJUKAN

Ahmedzade, P. 2013. The investigation and comparison effects of SBS and SBS with new reactive terpolymer on the rheological properties of asphalt. Construction and Building Materials 38: 285-291.

Cabanelas, J.C., Serrano, B., Gonzalez, M.G. & Baselga, J. 2005. Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets. Polymer 46(17): 6633-6639.

Chen, X., Li, C., Jiang, Y., Zhang, W. & Xu, G. 2019. Comparisons with high viscosity additive effects on base and modified asphalt. Petroleum Science and Technology 37(11): 1331-1337.

Chen, X.H., Huang, W. & Qian, Z.D. 2007. Interfacial behaviors of epoxy asphalt surfacing on steel decks. Journal of Southeast University 23(4): 594-598.

Cong, P., Luo, W., Xu, P. & Zhang, Y. 2019. Chemical and physical properties of hot mixing epoxy asphalt binders. Construction and Building Materials 198: 1-9.

Cong, P., Tian, Y., Liu, N. & Xu, P. 2016. Investigation of epoxy-resin-modified asphalt binder. Journal of Applied Polymer Science 133(21). Doi: 10.1002/app.4340.

Cong, P., Chen, S. & Yu, J. 2011a. Investigation of the properties of epoxy resin-modified asphalt mixtures for application to orthotropic bridge decks. Journal of Applied Polymer Science 121(4): 2310-2316.

Cong, P.,  Chen, S., Yu, J. & Chen, H. 2011b. Compatibility and mechanical properties of epoxy resin modified asphalt binders. International Journal of Pavement Research and Technology 4(2): 118-123.

Cong, P., Yu, J. & Chen, S. 2010. Effects of epoxy resin contents on therheological properties of epoxy-asphalt blends. Journal of Applied Polymer Science 118(6): 3678-3684.

Dong, Z. & Li, L.P. 2015. Study on dynamic mechanical properties and microstructure of epoxy asphalt. Proceedings of the 2015 International Conference on Applied Science and Engineering Innovation 12: 516-523.

Fu, H., Xie, L., Dou, D., Li, L., Yu, M. & Yao, S. 2007. Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Construction and Building Materials 21(7): 1528-1533.

Hou, X. 2006. Research on the technology of powdered coal particle measurement based on image processing. Taiyuan University of Technology.

Huang, W. 2003. Epoxy asphalt concrete paving on the deck of long-span steel bridges. Chinese Science Bulletin 48(21): 2391-2394.

Jun, Y., Aizhu, L.H., Dengquan, Y. & Jianwei, W.A. 2007. Evaluation of modification effects of epoxy resin based on performance of asphalt mixtures. Journal of Southeast University 23(1): 122-126.

Kang, Y., Song, M., Pu, L. & Liu, T. 2015. Rheological behaviors of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Construction and Building Materials 76: 343-350.

Kang, Y., Wang, F. & Chen, Z.M. 2010. Performance optimization and bimodal morphology of advanced epoxy asphalt.

Kui, H. 2013. Microstructure quantitative techniques and applications of sbs modified asphalt. PhD Thesis. Chang'an University (Unpublished).

Lu, Q. & Bors, J. 2015. Alternate uses of epoxy asphalt on bridge decks and roadways. Construction and Building Materials 78: 18-25.

Motamedi, M., Attar, M.M. & Rostami, M. 2017. Performance enhancement of the oxidized asphalt binder using epoxy resin. Progress in Organic Coatings 102: 178-185.

Rafi, J., Kamal, M., Ahmad, N., Hafeez, M., Faizan ul Haq, M., Aamara, Asif, Shabbir, F. & Bilal Ahmed Zaidi, S. 2018. Performance evaluation of carbon black nano-particle reinforced asphalt mixture. Applied Sciences 8(7): 1114.

Sengoz, B. & Isikyakar, G. 2008. Analysis of styrene-butadiene-styrene polymer modified asphalt using fluorescent microscopy and conventional test methods. Journal of Hazardous Materials 150(2): 424-432.

Si, J., Li, Y. & Yu, X. 2019. Curing behavior and mechanical properties of an eco-friendly cold-mixed epoxy asphalt. Materials and Structures 52: 81. doi:10.1617/s11527-019-1382-5.

Sun, L., Xin, X. & Ren, J. 2017. Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Construction and Building Materials 133: 358-366.

Yao, H., You, Z., Li, L., Goh, S.W., Lee, C.H., Yap, Y.K. & Shi, X. 2013. Rheological properties and chemical analysis of nanoclay and carbon microfiber modifiedasphalt with Fourier transform infrared spectroscopy. Construction and Building Materials 38: 327-337.

Yildirim, Y. 2007. Polymer modified asphalt binders. Construction and Building Materials 21(1): 66-72.

Yin, C., Zhang, H. & Pan, Y. 2016. Cracking mechanism and repair techniques of epoxy asphalt on steel bridge deck pavement. Transportation Research Record: Journal of the Transportation Research Board 2550(1): 123-130.

Yin, H., Zhang, Y., Sun, Y., Xu, W., Yu, D., Xie, H. & Cheng, R. 2014. Performance of hot mix epoxy asphalt binder and its concrete. Materials and Structures 48(11): 3825-3835. doi:10.1617/s11527-014-0442-0.

Yin, H., Jin, H., Wang, C., Sun, Y., Yuan, Z., Xie, H., Wang, Z. & Cheng, R. 2013. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. Journal of Thermal Analysis and Calorimetry 115(2): 1073-1080.

Zhang, R., Wang, H., Gao, J., You, Z. & Yang, X. 2017. High temperature performance of SBS modified bio-asphalt. Construction and Building Materials 144: 99-105.

Zhendong, Q.I., Sang, L. & Jian-Wei, W. 2007. Laboratory evaluation of epoxy resin modified asphalt mixtures. Journal of Southeast University 23(1): 117-121.

 

*Pengarang untuk surat-menyurat; email: gaomingxing_2000@imau.edu.cn

 

 

 

 

sebelumnya