Sains Malaysiana 49(3)(2020): 517-525
http://dx.doi.org/10.17576/jsm-2020-4903-06
Exploring the Molecular Interactions between Neoculin
and the Human Sweet Taste Receptors through Computational Approaches
(Meneroka Interaksi Molekul antara Neokulin dan Reseptor
Rasa Manis Manusia melalui Pendekatan Pengiraan)
RAGHEED HUSSAM YOUSIF1, HABIBAH A. WAHAB2,
KAMYAR SHAMELI1 & NURUL BAHIYAH AHMAD KHAIRUDIN1*
1Department of Environment and Green Technology, Malaysia-Japan
International Institute of Technology, Universiti Teknologi Malaysia,
Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory,
Malaysia
2School of Pharmaceutical Sciences, Universiti Sains Malaysia,
11800 Universiti Sains Malaysia, Pulau Pinang, Malaysia
Diserahkan: 24 Mei 2019/Diterima: 5 Disember 2019
ABSTRACT
Neoculin is a sweet taste protein capable of modifying
sour taste into sweet taste. Neoculin, along with other sweeteners,
are received by the human sweet taste receptors T1R2 and T1R3. To
date, there has been few studies regarding how neoculin interacts
with the human sweet taste receptors in molecular level. In this
study, computational approaches were applied to elucidate how neoculin
interact with T1R2 and T1R3 at molecular level. In order to achieve
this research, homology modeling for T1R2 and T1R3 was performed
to predict their structure. A protein-protein docking study was
conducted between neoculin and T1R2 and T1R3, which displayed a
strong relationship with the previous experimental findings regarding
the important residues of neoculin, and how they interact with the
ATD domain of T1R3. These residues are His11, Asp91, Tyr21, Asn44,
Arg48, Tyr 65, Val72, and Phe94. The best docked complexes were
then subjected to molecular dynamics simulation for further analysis.
The molecular dynamics simulation results showed the contributions
of the important residues of neoculin in forming hydrogen bonds
with the residues of the receptors. The binding energy between neoculin
and each of T1R2 and T1R3 were also calculated. These results concluded
that neoculin sweet taste and taste modifying abilities are only
active when it binds to the amino terminal domain of T1R3.
Keywords: Homology modeling; molecular dynamics simulation;
neoculin; protein-protein docking; T1R2\T1R3
ABSTRAK
Neokulin adalah protein rasa
manis yang mampu mengubah rasa masam menjadi rasa manis. Neokulin,
seperti pemanis lain, diterima oleh reseptor perasa manis manusia
iaitu T1R2 dan T1R3. Sehingga kini, sudah terdapat beberapa kajian
yang dijalankan untuk mengenal pasti bagaimana neokulin berinteraksi
dengan reseptor kemanisan pada peringkat molekul. Dalam kajian ini,
kaedah pengiraan digunakan untuk memperjelaskan bagaimana neokulin
berinteraksi dengan T1R2 dan T1R3 pada tahap molekul. Bagi menjalankan
kajian ini, permodelan homologi untuk T1R2 dan T1R3 telah dijalankan
untuk menjangkakan struktur tersebut. Kajian pendokkan protein-protein
telah dijalankan antara neokulin dan T1R2 serta T1R3, yang menunjukkan
terdapat hubungan yang kuat dengan penemuan kajian sebelumnya mengenai
sisa penting neokulin dan bagaimana ia berinteraksi bersama domain
ATD kepada T1R3. Sisa tersebut adalah His11, Asp91, Tyr21, Asn44,
Arg48, Tyr 65, Val72 dan Phe94. Kompleks dok terbaik itu kemudiannya
diuji kepada simulasi dinamik molekul untuk analisis lanjutan. Hasil
simulasi dinamik molekul menunjukkan sumbangan daripada sisa penting
neokulin dalam membentuk ikatan hidrogen dengan sisa reseptor. Tenaga
yang mengikat antara Neokulin dan setiap T1R2 dan T1R3 juga turut
dihitung. Keputusan ini menyimpulkan bahawa rasa manis neokulin
dan kebolehan mengubah suai adalah aktif hanya apabila ia mengikat
kepada domain terminal amino T1R3.
Kata kunci: Neokulin; pemodelan
homologi; pendokkan protein-protein; simulasi molekul dinamik; T1R2\T1R3
RUJUKAN
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang,
J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST
and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Res. 25(17): 3389-3402.
Assadi-Porter,
F.M., Maillet, E.L., Radek, J.T., Quijada, J., Markley, J.L. &
Max, M. 2010. Key amino acid residues involved in multi-point binding
interactions between brazzein, a sweet protein, and the T1R2‚T1R3
human sweet receptor. Journal of Molecular Biology 398(4): 584-599.
Binkowski,
T.A., Naghibzadeh, S. & Liang, J. 2003. CASTp: Computed atlas
of surface topography of proteins. Nucleic
Acids Res. 31(13): 3352-3355.
Castleman,
P.N., Sears, C., Cole, J.A., Baker, D.L. & Parrill, A.L. 2018.
GPCR homology model template selection benchmarking: Global versus
local similarity measures. Journal of Molecular Graphics and Modelling 86: 235-246.
Cheron,
J.B., Golebiowski, J., Antonczak, S. & Fiorucci, S. 2017. The
anatomy of mammalian sweet taste receptors. Proteins
85(2): 332-341.
Comeau,
S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. 2004. ClusPro:
A fully automated algorithm for protein-protein docking. Nucleic Acids Research 32(2): W96-W99.
Cuff,
J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M. & Barton, G.J.
1998. JPred: A consensus secondary structure prediction server.
Bioinformatics 14(10): 892-893.
Cui, M.,
Jiang, P.H., Maillet, E., Max, M., Margolskee, R.F. & Roman
Osman. 2006. The heterodimeric sweet taste receptor has multiple
potential ligand binding sites. Current
Pharmaceutical Design 12(35): 4591-4600.
Dias,
R. & de Azevedo Jr., W.F. 2008. Molecular docking algorithms.
Current Drug Targets 9(12): 1040-1047.
Eswar,
N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D.,
Shen, M-Y., Pieper, U. & Sali, A. 2007. Comparative protein
structure modeling using MODELLER. Current
Protocols in Protein Science 50(1): 2.9.1-2.9.31.
Fischer,
G., Rossmann, M. & Hyvönen, M. 2015. Alternative modulation
of protein-protein interactions by small molecules. Current Opinion in Biotechnology 35: 78-85.
Ho, B.K.
& Brasseur, R. 2005. The Ramachandran plots of glycine and pre-proline.
BMC Structural Biology
5: 14.
Huang,
S-Y. 2015. Exploring the potential of global protein-protein docking:
An overview and critical assessment of current programs for automatic
ab initio docking. Drug Discovery Today 20(8): 969-977.
Kastritis,
P.L. & Bonvin, A.M.J.J. 2013. The binding affinity of macromolecular
interactions: Daring to ask why proteins interact. Journal of The Royal Society Interface 10(79): 20120835.
Kim, S.K.,
Chen, Y., Abrol, R., Goddard, W.A. & Guthrie, B. 2017. Activation
mechanism of the G protein-coupled sweet receptor heterodimer with
sweeteners and allosteric agonists. Proc.
Natl. Acad. Sci. USA 114(10): 2568-2573.
Koizumi,
T., Terada, T., Nakajima, K-I., Kojima, M., Koshiba, S., Matsumura,
Y., Kaneda, K., Asakura, T., Shimizu-Ibuka, A., Abe, K. & Misaka,
T. 2015. Identification of key neoculin residues responsible for
the binding and activation of the sweet taste receptor.
Scientific Reports 5: 12947.
Koizumi,
A., Nakajima, K., Asakura, T., Morita, Y., Ito, K., Shmizu-Ibuka,
A., Misaka, T. & Abe, K. 2007. Taste-modifying sweet protein,
neoculin, is received at human T1R3 amino terminal domain. Biochemical
and Biophysical Research Communications 358(2): 585-589.
Kozakov,
D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov,
D. & Vajda, S. 2017. The ClusPro web server for protein-protein
docking. Nat. Protoc. 12(2): 255-278.
Kumari,
R., Kumar, R., Open Source Drug Discovery Consortium. & Lynn,
A. 2014. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations.
Journal of Chemical Information and Modeling
54(7): 1951-1962.
Kurimoto,
E., Suzuki, M., Amemiya, E., Yamaguchi, Y., Nirasawa, S., Shimba,
N., Xu, N., Kashiwagi, T., Kawai, M., Suzuki, E. & Kato, K.
2007. Curculin exhibits sweet-tasting and taste-modifying activities
through its distinct molecular surfaces. Journal
of Biological Chemistry 282(46): 33252-33256.
Lee, J.,
Cheng, Xi., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A.,
Wei, S., Buckner, J., Jeong, J.C., Qi, Y.F., Jo, S.H., Pande, V.S.,
Case, D.A.,
Brooks, III, C.L.,
MacKerell Jr., A.D., Klauda, J.B.
& Im, W.P. 2015.
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and
CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal
of Chemical Theory and Computation 12(1): 405-413.
Lomize,
M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L.
2012. OPM database and PPM web server: Resources for positioning
of proteins in membranes. Nucleic
Acids Research 40(D1): D370-D376.
Loo, J.S.E.,
Emtage, A.L., Ng, K.W., Yong, A.S.J. & Doughty, S.W. 2018. Assessing
GPCR homology models constructed from templates of various transmembrane
sequence identities: Binding mode prediction and docking enrichment.
Journal of Molecular Graphics
and Modelling 80: 38-47.
Maillet,
E.L., Cui, M., Jiang, P., Mezei, M., Hecht, E., Quijada, J., Margolskee,
R.F., Osman, R. & Max, M. 2015. Characterization of the binding
site of aspartame in the human sweet taste receptor. Chem.
Senses 40(8): 577-586.
Masuda,
K., Koizumi, A., Nakajima, K., Tanaka, T., Abe, K., Misaka, T. &
Ishiguro, M. 2012. Characterization of the modes of binding between
human sweet taste receptor and low-molecular-weight sweet compounds.
PLoS ONE 7(4): e35380.
Masuda,
T. & Kitabatake, N. 2006. Developments in biotechnological production
of sweet proteins. Journal
of Bioscience and Bioengineering 102(5): 375-389.
Mukherjee,
S. & Zhang, Y. 2011. Protein-protein complex structure predictions
by multimeric threading and template recombination. Structure 19(7): 955-966.
Nakajima,
K-I., Yokoyama, K., Koizumi, T., Koizumi, A., Asakura, T., Terada,
T., Masuda, K., Ito, K., Shimizu-Ibuka, A., Misaka, T. & Abe,
K. 2011. Identification and modulation of the key amino acid residue
responsible for the pH sensitivity of neoculin, a taste-modifying
protein. PLoS ONE 6(4): e19448.
Nakajima,
K., Morita, Y., Koizumi, A., Asakura, T., Terada, T., Ito, K., Shimizu-Ibuka,
A., Maruyama, J., Kitamoto, K., Misaka, T. & Abe, K. 2008. Acid-induced
sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic
interaction with human sweet taste receptor. FASEB J. 22(7): 2323-2330.
Ohkubo,
T., Tamiya, M., Abe, K. & Ishiguro, M. 2015. Structural basis
of pH dependence of neoculin, a sweet taste-modifying protein. PloS ONE 10(5): e0126921.
Ohta,
K., Masuda, T., Tani, F. & Kitabatake, N. 2011. Introduction
of a negative charge at Arg82 in thaumatin abolished responses to
human T1R2-T1R3 sweet receptors. Biochemical
and Biophysical Research Communications 413(1): 41-45.
Oshiro,
C., Bradley, E.K., Eksterowicz, J., Evensen, E., Lamb, M.L., Lanctot,
J.K., Putta, S., Stanton, R. & Grootenhuis, P.D.J. 2004. Performance
of 3D-Database molecular docking studies into homology models. Journal of Medicinal Chemistry 47(3): 764-767.
Schneidman-Duhovny,
D., Inbar, Y., Nussinov, R. & Wolfson, H.J. 2005. PatchDock
and SymmDock: Servers for rigid and symmetric docking. Nucleic
Acids Research 33(2): W363-W367.
Shrivastav,
A. & Srivastava, S. 2013. Human sweet taste receptor: Complete
structure prediction and evaluation. International
Journal of Chemical and Analytical Science 4(1): 24-32.
Sievers,
F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Weizhong, L.,
Lopez, R., McWilliam, H., Remmert, M. & Söding, J. 2011. Fast,
scalable generation of high‐quality protein multiple sequence
alignments using Clustal Omega. Molecular Systems Biology 7(1): 539.
Veselovsky,
A.V., Ivanov, Y.D., Ivanov, A.S., Archakov, A.I., Lewi, P. &
Janssen, P. 2002. Protein–protein interactions: Mechanisms and modification
by drugs. Journal of Molecular Recognition 15(6):
405-422.
Wallace,
A.C., Laskowski, R.A. & Thornton, J.M. 1995. LIGPLOT: A program
to generate schematic diagrams of protein-ligand interactions. Protein Engineering 8(2): 127-134.
Yamashita,
H., Theerasilp, S., Aiuchi, T., Nakaya, K., Nakamura, Y. & Kurihara.
1990. Purification and complete amino acid sequence
of a new type of sweet protein with taste-modifying activity, curculin.
The Journal of Biochemical
Chemistry 265(6): 15770-15775.
Yang,
J., Roy, A. & Zhang, Y. 2013. Protein-ligand binding site recognition
using complementary binding-specific substructure comparison and
sequence profile alignment. Bioinformatics
29(20): 2588-2595.
Yarnitzky,
T., Levit, A. & Niv, M.Y. 2010. Homology modeling of G-protein-coupled
receptors with X-ray structures on the rise. Curr. Opin. Drug Discov. Devel. 13(3): 317-325.
*Pengarang
untuk surat-menyurat; email: r-bahiah@utm.my
|