Sains Malaysiana 49(3)(2020):
493-502
http://dx.doi.org/10.17576/jsm-2020-4903-04
Hidrogeologi
dan Geokimia Air Bawah Tanah di Daerah Tampin, Negeri Sembilan,
Malaysia
(Hydrogeology
and Groundwater Geochemistry of the Tampin District, Negeri Sembilan,
Malaysia)
NORHAYATI MOHD RAWI1,
NURSABRINA SYAHIRAH HAIRUDIN1, NORBERT SIMON1,2,3*,
LEE KHAI ERN2 & NORSYAFINA ROSLAN1
1Pusat Sains Bumi dan Alam Sekitar, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institut Alam Sekitar dan Pembangunan, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Pusat Kajian Bencana Alam (NDRC), Universiti
Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
Diserahkan: 25 Jun
2019/Diterima: 5 Disember 2019
ABSTRAK
Penilaian
air bawah tanah untuk kegunaan domestik adalah sangat penting untuk
mengelakkan isu kesihatan kepada pengguna yang bergantung kepada
air bawah tanah sebagai bekalan utama semasa krisis air dan kemarau.
Lazimnya, penilaian kualiti air bawah tanah hanya dijalankan untuk
menentukan keselamatan penggunaannya dan sumber semula jadi bahan
pencemar sering tidak dilaporkan. Oleh itu, tujuan utama kajian
ini adalah untuk menentukan kualiti air bawah tanah dan juga mengenal
pasti potensi bahan pencemar dan sumbernya menggunakan kaedah Piper
dan Gibbs sebagai tambahan kepada penilaian kualiti air. Analisis
ini telah dijalankan ke atas 38 telaga tiub di Daerah Tampin. Daerah
ini telah mengalami krisis air pada tahun 2015 semasa air di Empangan
Gemencheh turun ke paras kritikal akibat daripada fenomena El Nino.
Untuk tujuan analisis, data geokimia dari tahun 2013 ke 2015 telah
digunakan. Berdasarkan Rajah Piper, unsur yang dominan dalam telaga
tiub tersebut adalah Ca2+HO3-,
diikuti oleh Na+ HO3-, dan Ca2+Na+
HO3-. Evolusi hidrokimia pula adalah akibat
daripada interaksi antara batuan dan pemendakan air bawah tanah
berdasarkan Rajah Gibbs. Berkenaan dengan kualiti air, paras Fe
didapati meningkat dalam 3 telaga tiub (NTPPW
18, RTG 27 & RTG 53) sepanjang tahun tersebut, manakala unsur
lain didapati berada pada tahap yang boleh diterima. Keputusan kajian
menunjukkan bahan pencemar terbentuk daripada interaksi air dengan
batuan yang terluluhawa dan juga daripada air hujan yang boleh melarutkan
serta mengalirkan ion unsur logam ke dalam telaga tiub sekitar Daerah
Tampin.
Kata kunci: Air bawah tanah; fiziko-kimia; Rajah Gibbs; Rajah Piper
ABSTRACT
Groundwater
assessment for domestic use is vitally important to prevent health
issues to users who are depending on groundwater as their main supplies
especially during water crisis and drought. Often, quality of groundwater
is assessed only on their safety for use, the source of natural
pollutants especially from geological materials is often not reported.
Therefore, the main aim of this study was to determine the water
quality of tubewells and also to identify potential pollutants and
their sources using Piper and Gibbs methods as an addition for water
quality assessment. The Piper diagram is used to provide an understanding
on the geochemical evolution of the groundwater and the Gibbs diagram
shows the relationship of the water composition and the aquifer.
The analysis was conducted on 38 tubewells in the District of Tampin.
This district has experience water crisis in 2015 when the water
in the Gemencheh Dam dropped to a critical level due to the El Nino
phenomenon. For the analysis purpose, geochemical data from 2013
to 2015 from 8 active tubewells were used. Based on the Piper Diagram,
the dominant element found in wells are Ca2+HO3-, followed
by Na+ HO3- and Ca-Na-
HO3-. The hydro-chemical evolution is mainly
due to the interaction between rocks and precipitation of groundwater
based on the Gibbs Diagram. On the water quality, the level of Fe
is found to be increasing in 3 wells (NTPPW 18, RTG 27 & RTG
53) over the years, while other critical elements remain to be in
acceptable level. The overall finding shows that pollutants may
enter the wells from weathered rock and also from rainfall that
will saturate as well as draining heavy metal ions into wells around
the Tampin District.
Keywords: Gibbs Diagram; physico-chemical; Piper Diagram; underground
water
RUJUKAN
Alhibshi, E., Albriky, K. & Bushita, A. 2014. Concentration of heavy
metals in underground water wells in Gharian district, Libya. International Conference on Agricultural, Ecological
and Medical Sciences (AEMS-2014), February 6-7.
Annapoorna, H. & Janardhana, M.R. 2015. Assessment of groundwater
quality for drinking purpose in rural areas surrounding a defunct
copper mine. Aquatic Procedia 4: 685-692.
Balachandar,
D., Sundararaj, P., Rudhravel, K. & Kumaraswamy, K. 2010. An
investigation of groundwater quality and its suitability to irrigated
agriculture in Coimbatore District, Tamil Nadu, India - A GIS Approach.
International Journal of Environmental Sciences 1(2): 176-190.
Batayneh, A. & Zumlot, T. 2012. Multivariate statistical approach
to geochemical methods in water quality factor identification: Application
to the shallow aquifer system of the Yarmouk Basin of North Jordan.
Research Journal of Environmental and Earth Sciences 4(7):
756-768.
BERNAMA. 2018. Cuaca panas: Paras air empangan dipantau.
Chapman, D. 1992. Water Quality
Assessment: A Guide to Use of Biota, Sediments and Water in Environmental
Monitoring. London: Chapman and Hall Ltd.
Davis, S.N. & De Wiest. 1996.
Hydrogeology. New York: John Wiley & Sons. p. 463.
Gibbs, R.J. 1970. Mechanisms controlling world’s water chemistry. Science, New Series 170(3962): 1088-1090.
Hakim, M.A., Juraimi, A.S., Begum, M., Hasanuzzaman, M., Uddin, M.K.
& Islam, M.M. 2009. Suitability evaluation of groundwater for
irrigation, drinking and industrial purposes. American
Journal of Environmental Sciences 5(3): 413-419.
Hamzah, Z., Rosdi, W.N.W., Wood, A.K.H. & Saat, A. 2014. Penentuan
kepekatan ion-ion utama air telaga di Kelantan, dengan menggunakan
pendaflur serakan tenaga sinar-X dan ion kromatografi. Malaysian
Journal of Analytical Sciences 18(1): 178-184.
Hem, D. 1985. Study and Interpretation
of the Chemical of Natural Characteristics of Natural Water.
U.S. Geological Survey, Water Supply Paper 2254.
Hosseini, N., Johnston, J. & Lindenschmidt, K.E. 2017. Impacts of
climate change on the water quality of a regulated prairie river.
Water (Switzerland) 9(3): 1-15.
Hwang, J.Y., Park, S., Kim, H.K., Kim, M.S., Jo, H.J., Kim, J.I., Lee,
G.M., Shin, I.K. & Kim, T.S. 2016. Hydrochemistry for the assessment
of groundwater quality in Korea. Journal of Agricultural Chemistry
and Environment 6(1): 1-29.
Kementerian Kesihatan Malaysia (KKM). 2004. Manual Kawalan Mutu Air Minuman. Jilid 1.
Kumar, S., Logeshkumaran, A., Magesh, N.S., Godson, P.S. & Chandrasekar,
N. 2014. Hydro-geochemistry and application of water quality index
(WQI) for groundwater quality assessment, Anna Nagar, part of Chennai
City, Tamil Nadu, India. Applied Water Science 5(4): 335-343.
Liang, Z., Chen, J., Jiang, T., Li, K., Gao, L., Wang, Z. & Xie,
Z. 2018. Identification of the dominant hydrogeochemical processes
and characterization of potential contaminants in groundwater in
Qingyuan, China, by multivariate statistical analysis. RSC
Advances 8(58): 33243-33255.
Niaz Ahmad, Zekai Şen. & Manzoor Ahmad. 2003. Ground water quality
assessment using multi-rectangular diagrams. Ground Water 41(6): 828-832.
Piper, A.M. 1944. A graphic procedure in the geochemical interpretation
of water-analyses. EOS, Transactions
American Geophysical Union 25: 914-928.
Sapari, N., Azie, R.Z.R. & Jusoh, H. 2011. Quantity and quality of
groundwater in fractured metasedimentary rocks of the West Coast
of Peninsular Malaysia. Sains Malaysiana 40(6): 537-542.
Seribu, K. & Jakarta, D.K.I. 2017. Analisis karakteristik hidrogeokimia
airtanah di Pulau Koral Panggal. Jurnal Geografi 9(2): 99-108.
Shankar, K., Aravindan, S. & Rajendran, S. 2017. Hydrochemical profile
for assessing the groundwater quality of Paravanar River sub-basin,
Cuddalore District, Tamil Nadu, India. Current World Environment
1(1): 45-52.
Shirazi, S.M., Adham, M.I., Zardari, N.H., Ismail, Z., Imran, H.M.D.
& Mangrio, M.A. 2015. Groundwater quality and hydrogeological
characteristics of Malacca state in Malaysia. Journal of Water
and Land Development 24(1-3): 11-19.
Subyani, A.M. & Ahmadi, M.E.A. 2010. Multivariate statistical analysis
of groundwater quality in Wadi Ranyah, Saudi Arabia. Journal
of King Abdulaziz University, Earth Sciences 21(2): 29-46.
Shivashankara, G.P., Sharmila, G.V. & Shruthi, R. 2016. Interaction
of precipitation and groundwater chemistry-Karnataka, India. International Journal of Environmental Science
and Development 7(8): 568-575.
SPAN. 2014. Laporan Tahunan Suruhanjaya Perkhidmatan Air Negara.
Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W.N., Ibrahim, S., Zaharin
Aris, A. & Mustapha, A. 2013. Evaluation of factors influencing
the groundwater chemistry in a small tropical Island of Malaysia.
International Journal of Environmental Research and Public Health
10(5): 1861-1881.
Tanuguchi, M. & Holman, I.P. 2010. Groundwater Response to Changing Climate. Boca Raton: CRC Press.
Unit
Perancang Ekonomi Negeri. 2015. Data
Sosioekonomi Negeri Sembilan.
Utusan Malaysia. 2016. Paras air di Empangan
Gemencheh di bawah paras kritikal. http://www.utusan.com.my/berita/national/patas-air-di-empangan-gemencheh-di-bawah-paras-kritikal-1.184683, diakses pada 11 November 2017.
WHO. 1996. Total dissolved solids in drinking-water.
In Guidelines for Drinking-Water
Quality. 2nd ed. Volume 2. World Health Organization Geneva.
*Pengarang untuk surat-menyurat;
email: norbsn@ukm.edu.my
|