Sains Malaysiana 49(3)(2020): 493-502

http://dx.doi.org/10.17576/jsm-2020-4903-04

 

Hidrogeologi dan Geokimia Air Bawah Tanah di Daerah Tampin, Negeri Sembilan, Malaysia

(Hydrogeology and Groundwater Geochemistry of the Tampin District, Negeri Sembilan, Malaysia)

 

NORHAYATI MOHD RAWI1, NURSABRINA SYAHIRAH HAIRUDIN1, NORBERT SIMON1,2,3*, LEE KHAI ERN2 & NORSYAFINA ROSLAN1

1Pusat Sains Bumi dan Alam Sekitar, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Institut Alam Sekitar dan Pembangunan, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Pusat Kajian Bencana Alam (NDRC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 

Diserahkan: 25 Jun 2019/Diterima: 5 Disember 2019

 

ABSTRAK

Penilaian air bawah tanah untuk kegunaan domestik adalah sangat penting untuk mengelakkan isu kesihatan kepada pengguna yang bergantung kepada air bawah tanah sebagai bekalan utama semasa krisis air dan kemarau. Lazimnya, penilaian kualiti air bawah tanah hanya dijalankan untuk menentukan keselamatan penggunaannya dan sumber semula jadi bahan pencemar sering tidak dilaporkan. Oleh itu, tujuan utama kajian ini adalah untuk menentukan kualiti air bawah tanah dan juga mengenal pasti potensi bahan pencemar dan sumbernya menggunakan kaedah Piper dan Gibbs sebagai tambahan kepada penilaian kualiti air. Analisis ini telah dijalankan ke atas 38 telaga tiub di Daerah Tampin. Daerah ini telah mengalami krisis air pada tahun 2015 semasa air di Empangan Gemencheh turun ke paras kritikal akibat daripada fenomena El Nino. Untuk tujuan analisis, data geokimia dari tahun 2013 ke 2015 telah digunakan. Berdasarkan Rajah Piper, unsur yang dominan dalam telaga tiub tersebut adalah Ca2+HO3-, diikuti oleh Na+ HO3-, dan Ca2+Na+ HO3-. Evolusi hidrokimia pula adalah akibat daripada interaksi antara batuan dan pemendakan air bawah tanah berdasarkan Rajah Gibbs. Berkenaan dengan kualiti air, paras Fe didapati meningkat dalam 3 telaga tiub (NTPPW 18, RTG 27 & RTG 53) sepanjang tahun tersebut, manakala unsur lain didapati berada pada tahap yang boleh diterima. Keputusan kajian menunjukkan bahan pencemar terbentuk daripada interaksi air dengan batuan yang terluluhawa dan juga daripada air hujan yang boleh melarutkan serta mengalirkan ion unsur logam ke dalam telaga tiub sekitar Daerah Tampin.

 

Kata kunci: Air bawah tanah; fiziko-kimia; Rajah Gibbs; Rajah Piper

 

ABSTRACT

Groundwater assessment for domestic use is vitally important to prevent health issues to users who are depending on groundwater as their main supplies especially during water crisis and drought. Often, quality of groundwater is assessed only on their safety for use, the source of natural pollutants especially from geological materials is often not reported. Therefore, the main aim of this study was to determine the water quality of tubewells and also to identify potential pollutants and their sources using Piper and Gibbs methods as an addition for water quality assessment. The Piper diagram is used to provide an understanding on the geochemical evolution of the groundwater and the Gibbs diagram shows the relationship of the water composition and the aquifer. The analysis was conducted on 38 tubewells in the District of Tampin. This district has experience water crisis in 2015 when the water in the Gemencheh Dam dropped to a critical level due to the El Nino phenomenon. For the analysis purpose, geochemical data from 2013 to 2015 from 8 active tubewells were used. Based on the Piper Diagram, the dominant element found in wells are  Ca2+HO3-, followed by Na+ HO3- and Ca-Na- HO3-. The hydro-chemical evolution is mainly due to the interaction between rocks and precipitation of groundwater based on the Gibbs Diagram. On the water quality, the level of Fe is found to be increasing in 3 wells (NTPPW 18, RTG 27 & RTG 53) over the years, while other critical elements remain to be in acceptable level. The overall finding shows that pollutants may enter the wells from weathered rock and also from rainfall that will saturate as well as draining heavy metal ions into wells around the Tampin District.

 

Keywords: Gibbs Diagram; physico-chemical; Piper Diagram; underground water

 

RUJUKAN

Alhibshi, E., Albriky, K. & Bushita, A. 2014. Concentration of heavy metals in underground water wells in Gharian district, Libya. International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2014), February 6-7.

Annapoorna, H. & Janardhana, M.R. 2015. Assessment of groundwater quality for drinking purpose in rural areas surrounding a defunct copper mine. Aquatic Procedia 4: 685-692.

Balachandar, D., Sundararaj, P., Rudhravel, K. & Kumaraswamy, K. 2010. An investigation of groundwater quality and its suitability to irrigated agriculture in Coimbatore District, Tamil Nadu, India - A GIS Approach. International Journal of Environmental Sciences 1(2): 176-190.

Batayneh, A. & Zumlot, T. 2012. Multivariate statistical approach to geochemical methods in water quality factor identification: Application to the shallow aquifer system of the Yarmouk Basin of North Jordan. Research Journal of Environmental and Earth Sciences 4(7): 756-768.

BERNAMA. 2018. Cuaca panas: Paras air empangan dipantau.

Chapman, D. 1992. Water Quality Assessment: A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. London: Chapman and Hall Ltd.

Davis, S.N. & De Wiest. 1996. Hydrogeology. New York: John Wiley & Sons. p. 463.

Gibbs, R.J. 1970. Mechanisms controlling world’s water chemistry. Science, New Series 170(3962): 1088-1090.

Hakim, M.A., Juraimi, A.S., Begum, M., Hasanuzzaman, M., Uddin, M.K. & Islam, M.M. 2009. Suitability evaluation of groundwater for irrigation, drinking and industrial purposes. American Journal of Environmental Sciences 5(3): 413-419.

Hamzah, Z., Rosdi, W.N.W., Wood, A.K.H. & Saat, A. 2014. Penentuan kepekatan ion-ion utama air telaga di Kelantan, dengan menggunakan pendaflur serakan tenaga sinar-X dan ion kromatografi. Malaysian Journal of Analytical Sciences 18(1): 178-184.

Hem, D. 1985. Study and Interpretation of the Chemical of Natural Characteristics of Natural Water. U.S. Geological Survey, Water Supply Paper 2254.

Hosseini, N., Johnston, J. & Lindenschmidt, K.E. 2017. Impacts of climate change on the water quality of a regulated prairie river. Water (Switzerland) 9(3): 1-15.

Hwang, J.Y., Park, S., Kim, H.K., Kim, M.S., Jo, H.J., Kim, J.I., Lee, G.M., Shin, I.K. & Kim, T.S. 2016. Hydrochemistry for the assessment of groundwater quality in Korea. Journal of Agricultural Chemistry and Environment 6(1): 1-29.

Kementerian Kesihatan Malaysia (KKM). 2004. Manual Kawalan Mutu Air Minuman. Jilid 1.

Kumar, S., Logeshkumaran, A., Magesh, N.S., Godson, P.S. & Chandrasekar, N. 2014. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Applied Water Science 5(4): 335-343.

Liang, Z., Chen, J., Jiang, T., Li, K., Gao, L., Wang, Z. & Xie, Z. 2018. Identification of the dominant hydrogeochemical processes and characterization of potential contaminants in groundwater in Qingyuan, China, by multivariate statistical analysis. RSC Advances 8(58): 33243-33255.

Niaz Ahmad, Zekai Şen. & Manzoor Ahmad. 2003. Ground water quality assessment using multi-rectangular diagrams. Ground Water 41(6): 828-832.

Piper, A.M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. EOS, Transactions American Geophysical Union 25: 914-928.

Sapari, N., Azie, R.Z.R. & Jusoh, H. 2011. Quantity and quality of groundwater in fractured metasedimentary rocks of the West Coast of Peninsular Malaysia. Sains Malaysiana 40(6): 537-542.

Seribu, K. & Jakarta, D.K.I. 2017. Analisis karakteristik hidrogeokimia airtanah di Pulau Koral Panggal. Jurnal Geografi 9(2): 99-108.

Shankar, K., Aravindan, S. & Rajendran, S. 2017. Hydrochemical profile for assessing the groundwater quality of Paravanar River sub-basin, Cuddalore District, Tamil Nadu, India. Current World Environment 1(1): 45-52.

Shirazi, S.M., Adham, M.I., Zardari, N.H., Ismail, Z., Imran, H.M.D. & Mangrio, M.A. 2015. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development 24(1-3): 11-19.

Subyani, A.M. & Ahmadi, M.E.A. 2010. Multivariate statistical analysis of groundwater quality in Wadi Ranyah, Saudi Arabia. Journal of King Abdulaziz University, Earth Sciences 21(2): 29-46.

Shivashankara, G.P., Sharmila, G.V. & Shruthi, R. 2016. Interaction of precipitation and groundwater chemistry-Karnataka, India. International Journal of Environmental Science and Development 7(8): 568-575.

SPAN. 2014. Laporan Tahunan Suruhanjaya Perkhidmatan Air Negara.

Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W.N., Ibrahim, S., Zaharin Aris, A. & Mustapha, A. 2013. Evaluation of factors influencing the groundwater chemistry in a small tropical Island of Malaysia. International Journal of Environmental Research and Public Health 10(5): 1861-1881.

Tanuguchi, M. & Holman, I.P. 2010. Groundwater Response to Changing Climate. Boca Raton: CRC Press.

Unit Perancang Ekonomi Negeri. 2015. Data Sosioekonomi Negeri Sembilan.

Utusan Malaysia. 2016. Paras air di Empangan Gemencheh di bawah paras kritikal. http://www.utusan.com.my/berita/national/patas-air-di-empangan-gemencheh-di-bawah-paras-kritikal-1.184683, diakses pada 11 November 2017.

WHO. 1996. Total dissolved solids in drinking-water. In Guidelines for Drinking-Water Quality. 2nd ed. Volume 2. World Health Organization Geneva.

*Pengarang untuk surat-menyurat; email: norbsn@ukm.edu.my

 

 

 

 

sebelumnya