Sains Malaysiana 49(12)(2020): 3229-3241
http://dx.doi.org/10.17576/jsm-2020-4912-34
UKM2 Chlorella sp. Strain Electricity Performance as
Bio-anode under Different Light Wavelength in a Biophotovoltaic Cell
(Prestasi Elektrik Strain UKM2 Chlorella sp. sebagai Bio-anod di bawah Gelombang Cahaya Berbeza dalam Sel Biofotovoltan)
AISYAH NADHIRAH
JUHARI1, MUHD SYAZWAN SHARANI2, WAN RAMLI WAN
DAUD1,2, TAHEREH JAFARY3 & MIMI HANI ABU BAKAR1*
1Fuel Cell
Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Process
Engineering Department, International Maritime College, Sohar, Oman
Diserahkan:
17 Ogos 2020/Diterima: 11 September 2020
ABSTRACT
A biophotovoltaic
cell (BPV) is an electrobiochemical system that utilises a photosynthetic
microorganism for instance is algae to trap sunlight energy and convert it into
electricity. In this study, a local algae strain, UKM2 Chlorella sp. was
grown in a BPV under different trophic conditions and light wavelengths. Once
the acclimatisation phase succeeded, and biofilm formed, power generation by
UKM2 algae at the autotrophic mode in synthetic Bold’s Basal media (BBM) under
white, blue and red lights were tested. Polarisation and power curves were
generated at these different conditions to study the bioelectrochemical
performance of the system. Later, the condition switched to algal mixotrophic
nutritional mode, with palm oil mill effluent (POME) as substrate. Maximum
power generation obtained when using UKM2 in BBM under red light where a power
density of 1.19 ± 0.16 W/m3 was obtained at 25.74 ± 3.89 A/m3 current density, while the open circuit voltage OCV reached 226.08 ± 8.71 mV.
UKM2 in POME under blue light recorded maximum power density of 0.85 ± 0.18 W/m3 at current density of 16.75 ± 3.54 A/m3, while the OCV reached
214.05 ± 23.82 mV. Chemical oxygen demand (COD) removal reached an efficiency
of 35.93%, indicating the ability of wastewater treatment and electricity
generation in BPV at the same time
Keywords: Algae;
bioelectricity; biophotovoltaic; monochromatic light
ABSTRAK
Sel biofotovoltan
(BPV) ialah satu sistem elektrobiokimia yang menggunakan mikroorganisma
fotosintetik seperti alga untuk memerangkap tenaga cahaya matahari dan
menukarkannya kepada elektrik. Dalam kajian ini, UKM2 Chlorella sp.
iaitu strain alga tempatan yang ditempatkan di dalam BPV yang berbeza keadaan
trofik dan gelombang cahaya. Apabila fasa aklimatisasi telah berjaya dan
biofilem telah terhasil, kuasa tenaga yang telah dihasilkan oleh alga UKM2
dalam mod autotrofik sintetik Bolds’s Basal Media (BBM) di bawah cahaya putih,
biru, dan merah telah diuji. Lengkungan polarisasi dan lengkungan kuasa telah
dihasilkan bagi keadaan yang berbeza-beza ini adalah untuk mengkaji pencapaian
bioelektrokimia sistem tersebut. Setelah itu, keadaan tersebut diubah kepada
alga mod campuran trofik nutrisi, dengan menggunakan sisa efluen minyak kelapa
sawit sebagai substrat. Kuasa maksimum yang dihasilkan diperoleh menggunakan
UKM2 di dalam BBM di bawah cahaya merah dengan ketumpatan kuasa sebanyak 1.19 ±
0.16 W/m3 telah diperoleh pada ketumpatan arus 16.75 ± 3.54 A/m3,
manakala OCV pula mencecah sebanyak 226.08 ± 8.71 mV. Permintaan kimia oksigen
(COD) yang dibuang mencapai tahap keefisienan sebanyak 35.93%, yang menunjukkan
keupayaan untuk merawat sisa air buangan dan penghasilan elektrik pada BPV
dalam pada masa yang sama.
Kata kunci: Alga;
bioelektrik; biofotovoltan; cahaya monokromatik
RUJUKAN
Anderson,
A., Laohavisit, A., Blaby, I.K., Bombelli, P., Howe, C.J., Merchant, S.S.,
Davies, J.M. & Smith, A.G. 2016. Exploiting algal NADPH oxidase for
biophotovoltaic energy. Plant Biotechnology Journal 14(1): 22-28.
Baicha, Z.,
Salar-García, M.J., Ortiz-Martínez, V.M., Hernández-Fernández, F.J., De los
Ríos, A.P., Labjar, N., Lotfi, E. & Elmahi, M. 2016. A critical review on
microalgae as an alternative source for bioenergy production: A promising low
cost substrate for microbial fuel cells. Fuel Processing Technology 154:
104-116.
Barber,
M.J., Notton, B.A. & Solomonson, L.P. 1987. Oxidation-reduction midpoint
potentials of the molybdenum center in spinach NADH: Nitrate reductase. FEBS
Letters 213(2): 372-374.
Connolly,
J.S., Samuel, E.B. & Janzen, A.F. 1982. Effects of solvent on the
fluorescence properties of bacteriochlorophyll a. Photochemistry and
Photobiology 36(5): 565-574.
Cui, Y.,
Rashid, N., Hu, N., Rehman, M.S.U. & Han, J.I. 2014. Electricity generation
and microalgae cultivation in microbial fuel cell using microalgae-enriched
anode and bio-cathode. Energy Conversion and Management 79: 674-680.
Daud, S.M.,
Daud, W.R.W., Kim, B.H., Somalu, M.R., Bakar, M.H.A., Muchtar, A., Jahim, J.M.,
Lim, S.S. & Chang, I.S. 2018. Comparison of performance and ionic
concentration gradient of two-chamber microbial fuel cell using ceramic
membrane (CM) and cation exchange membrane (CEM) as separators. Electrochimica
Acta 259: 365-376.
De
Caprariis, B., De Filippis, P., Di Battista, A., Di, L. & Palma, M.S. 2014.
Exoelectrogenic activity of a green microalgae, Chlorella vulgaris, in a bio-photovoltaic cells (bpvs). Chemical
Engineering Transactions 38: 523-528.
Dolai, U.
2016. Complete procedure of biochemical reaction in photolysis. Journal of
Plant Biochemistry & Physiology 4(165): 1-2.
EIA 2017.
International Energy Outlook 2017. United States: U.S. Energy Information
Administration (EIA). Accessed on 11 April 2018.
Ghoreyshi,
A.A., Jafary, T., Najafpour, G.D. & Haghparast, F. 2011. Effect of type and
concentration of substrate on power generation in a dual chambered microbial
fuel cell. In World Renewable Energy Congress-Sweden 2011: 1174-1181.
Hariz, H.B.
& Takriff, M.S. 2017. Growth and biomass production of native microalgae Chlorella sp., Chlamydomonas sp., and Scenedesmus sp. cultivated in palm oil mill
effluent (POME) at different cultivation conditions. Transactions on Science
and Technology 4(3): 298-311.
Hariz,
H.B., Takriff, M.S., Yasin, N.H.M., Ba-Abbad, M.M. & Hakimi, N.I.N.M. 2019.
Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat palm oil mill effluent (POME) by indigenous
microalgae; Scenedesmus sp.
and Chlorella sp. Journal
of Water Process Engineering 32: 100907.
Hazman,
N.A.S., Yasin, N.H.M., Takriff, M.S., Hasan, H.A., Kamarudin, K.F. &
Hakimi, N.I.N.M. 2018. Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana 47(7): 1455-1464.
Jadhav,
D.A., Jain, S.C. & Ghangrekar, M.M. 2017. Simultaneous wastewater
treatment, algal biomass production and electricity generation in clayware
microbial carbon capture cells. Applied Biochemistry and Biotechnology 183(3): 1076-1092.
Jafary, T.,
Daud, W.R.W., Ghasemi, M., Bakar, M.H.A., Sedighi, M., Kim, B.H.,
Carmona-Martínez, A.A., Jahim, J.M. & Ismail, M. 2019. Clean hydrogen
production in a full biological microbial electrolysis cell. International
Journal of Hydrogen Energy 44(58): 30524-30531.
Jones, G.A.
& Warner, K.J. 2016. The 21st century population-energy-climate nexus. Energy
Policy 93: 206-212.
Kim, J.,
Lee, J.Y., Ahting, C., Johnstone, R. & Lu, T. 2014. Growth of Chlorella vulgaris using sodium
bicarbonate under no mixing condition. Asia Pacific Journal Chemical
Engineering 9(4): 604-609.
Lan,
J.C.W., Raman, K., Huang, C.M. & Chang, C.M. 2013. The impact of
monochromatic blue and red LED light upon performance of photo microbial fuel
cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as
biocatalyst. Biochemistry Engineering Journal 78: 39-43.
Logan, B.E.
2008. Microbial Fuel Cell. New York: John Wiley & Sons.
McCormick,
A.J., Bombelli, P., Bradley, R.W., Thorne, R., Wenzel, T. & Howe, C.J.
2015. Biophotovoltaics: Oxygenic photosynthetic organisms in the world of
bioelectrochemical systems. Energy & Environmental Science 8(4):
1092-1109.
McCormick,
A.J., Bombelli, P., Scott, A.M., Philips, A.J., Smith, A.G., Fisher, A.C. &
Howe, C.J. 2011. Photosynthetic biofilms in pure culture harness solar energy
in a mediatorless bio-photovoltaic cell (BPV) system. Energy &
Environmental Science 4(11): 4699-4709.
Mokashi,
K., Shetty, V., George, S.A. & Sibi, G. 2016. Sodium bicarbonate as
inorganic carbon source for higher biomass and lipid production integrated
carbon capture in Chlorella vulgaris. Achievements in the Life Sciences 10(1): 111-117.
Ng, F.L.,
Phang, S.M., Periasamy, V., Beardall, J., Yunus, K. & Fisher, A.C. 2018.
Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus
elongatus (Cyanophyta). Journal of Applied Phycology 30(6):
2981-2988.
Ng, F.L.,
Phang, S.M., Periasamy, V., Yunus, K. & Fisher, A.C. 2014. Evaluation of
algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms
based on photosynthetic performance. PLoS ONE 9(5): e97643.
Rahimnejad,
M., Bakeri, G., Najafpour, G., Ghasemi, M. & Oh, S.E. 2014. A review on the
effect of proton exchange membranes in microbial fuel cells. Biofuel
Resources Journal 1(1): 7-15.
Rodrigues,
D.D.S. 2014. Microbial
community optimization for electricity generation in microbial fuel cells. Master Thesis. Lisboa, Portugal: Instituto Superior Técnico. (Unpublished).
Rusli,
S.F.N., Bakar, M.H.A., Rani, S.J.A., Loh, K.S. & Mastar, M.S. 2018. Aryl
diazonium modification for improved graphite fibre brush in microbial fuel
cell. Sains Malaysiana 47(12): 3017-3023.
Saar, K.L.,
Bombelli, P., Lea-Smith, D.J., Call, T., Aro, E.M., Müller, T., Howe, C.J.
& Knowles, T.P. 2018. Enhancing power density of biophotovoltaics by
decoupling storage and power delivery. Nature Energy 3(1): 75-81.
Saratale,
R.G., Kuppam, C., Mudhoo, A., Saratale, G.D., Periyasamy, S., Zhen, G., Koók,
L., Bakonyi, P., Nemestóthy, N. & Kumar, G. 2017. Bioelectrochemical
systems using microalgae - a concise research update. Chemosphere 177:
35-43.
Shamsuddin,
R.A., Daud, W.R.W., Kim, B.H., Jahim, J.M., Bakar, M.H.A., Noor, W.S.A.M. &
Yunus, R.M. 2018. Electrochemical characterisation of heat-treated metal and
non-metal anodes using mud in microbial fuel cell. Sains Malaysiana 47(12): 3043-3049.
Singh, S.P.
& Singh, P. 2015. Effect of temperature and light on the growth of algae
species: A review. Renewable Sustainable Energy Review 50: 431-444.
Subhash,
G.V., Chandra, R. & Mohan, S.V. 2013. Microalgae mediated
bio-electrocatalytic fuel cell facilitates bioelectricity generation through
oxygenic photomixotrophic mechanism. Bioresources Technology 136:
644-653.
Thong,
C.H., Phang, S.M., Ng, F.L., Periasamy, V., Ling, T.C., Yunus, K. & Fisher,
A.C. 2019. Effect of different irradiance levels on bioelectricity generation
from algal biophotovoltaic (BPV) devices. Energy Science & Engineering 7(5): 2086-2097.
Ucar, D.,
Zhang, Y. & Angelidaki, I. 2017. An overview of electron acceptors in
microbial fuel cells. Frontier Microbiology 8: 643.
USGS 2018.
Alternative sources of energy - An introduction to fuel cells. In U.S.
Geological Survey Bulletin 2179. United States: United States Geological
Survey (USGS). Accessed on 11 April 2018.
Wang, X.,
Feng, Y., Liu, J., Lee, H., Li, C., Li, N. & Ren, N. 2010. Sequestration of
CO2 discharged from anode by algal cathode in microbial carbon
capture cells (MCCs). Biosensors Bioelectronics 25(12): 2639-2643.
Yan, C.,
Zhao, Y., Zheng, Z. & Luo, X. 2013. Effects of various LED light
wavelengths and light intensity supply strategies on synthetic high-strength
wastewater purification by Chlorella vulgaris. Biodegradation 24(5): 721-732.
Zhou, M.,
He, H., Jin, T. & Wang, H. 2012. Power generation enhancement in novel
microbial carbon capture cells with immobilized Chlorella vulgaris. Journal
of Power Sources 214: 216-219.
Zou, Y.,
Pisciotta, J., Billmyre, R.B. & Baskakov, I.V. 2009. Photosynthetic
microbial fuel cells with positive light response. Biotechnology
Bioengineering 104(5): 939-946.
*Pengarang
untuk surat-menyurat; email: mimihani@ukm.edu.my
|