Sains Malaysiana 49(12)(2020): 3209-3217

http://dx.doi.org/10.17576/jsm-2020-4912-32

 

Electrodeposited WO3/Au Photoanodes for Photoelectrochemical Reactions

(Pengelektroendapan Fotoanod WO3/Au untuk Tindak Balas Fotoelektrokimia)

 

LORNA JEFFERY MINGGU*, NURUL AKMAL JAAFAR, KIM HANG NG, KHUZAIMAH ARIFIN & ROZAN MOHAMAD YUNUS

 

Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 Ogos 2020/Diterima: 11 September 2020

 

ABSTRACT

This work aims to study the effect of gold (Au) loading on the photoelectrochemical behavior of tungsten trioxide (WO3) photoelectrodes. The WO3 film has been fabricated via electrodeposition method with constant potential on fluorine doped tin oxide (FTO) glass substrate. The Au nanoparticle loading on WO3 films surface was also prepared by constant potential electrodeposition. Due to the small amount of Au loading, the band gap values of the plasmonized WO3 remained around 2.6 eV. However, during the photoelectrochemical analysis, the photoactivity of the plasmonized WO3 photoelectrodes improved >100% with a minimal amount of Au loading compared to the pristine WO3. The photocurrent generation was further enhanced with the presence of organic donors (methanol and formic acid). The photocurrent achieved 3.74 mA/cm2 when 1.0 M of formic acid was added. Plausible charge transfer mechanism was suggested.

 

Keywords: Au nanoparticles; electrodeposition; photoelectrochemical; waste degradation; WO3 films

 

ABSTRAK

Kajian ini bertujuan untuk menguji kesan muatan aurum (Au) terhadap perilaku fotoelektrokimia fotoelektrod tungsten trioksida (WO3). Filem WO3 telah dihasilkan melalui kaedah elektroendapan potensi malar ke atas kaca bersalut timah oksida terdop florin (FTO). Nanopartikel Au dimendapkan ke atas permukaan filem WO3 dengan kaedah elektroendapan potensi malar. Jurang tenaga WO3 berplasmon kekal sekitar 2.6 eV disebabkan muatan Au yang sangat kecil. Namun begitu, semasa analisis fotoelektrokimia, fotoaktiviti fotoelektrod WO3 berplasmon telah meningkat >100% dengan muatan Au yang minimum berbanding WO3 tulen. Penjanaan fotoarus telah ditingkatkan lagi dengan penambahan penderma organik (metanol dan asid formik). Fotoarus telah mencapai 3.74 mA/cm2 apabila 1.0 M asid formik ditambahkan. Mekanisma pemindahan cas yang munasabah juga dicadangkan.

 

Kata kunci: Elektroendapan; filem WO3; fotoelektrokimia; nanopartikel Au; penguraian sisa

 

RUJUKAN

Alenzi, N., Liao, W.S., Cremer, P.S., Sanchez-Torres, V., Wood, T.K., Ehlig-Economides, C. & Cheng, Z. 2010. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. International Journal of Hydrogen Energy 35(21): 11768-11775.

Amer, M.S., Arunachalam, P., Al-Mayouf, A.M., Prasad, S., Alshalwi, M.N. & Ghanem, M.A. 2019. Mesoporous tungsten trioxide photoanodes modified with nitrogen-doped carbon quantum dots for enhanced oxygen evolution photo-reaction. Nanomaterials 9(10): 1502.

Aslam, M., Ismail, I.M.I., Chandrasekaran, S. & Hameed, A. 2014. Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. Journal Hazardous Materials 276: 120-128.

Chakrapani, V., Thangala, J. & Sunkara, M.K. 2009. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy 34(22): 9050-9059.

Chen, L., Tian, L., Zhao, X., Hu, Z., Fan, J. & Lv, K. 2020a. SPR effect of Au nanoparticles on the visible photocatalytic RhB degradation and NO oxidation over TiO2 hollow nanoboxes. Arabian Journal of Chemistry 13(2): 4404-4416.

Chen, Y., Feng, X., Liu, Y. Guan, X., Burda, C. & Guo, L. 2020b. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Letters 5(3): 844-866.

Cheng, Y. 2015. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress in Natural Science: Materials International 25(6): 545-553.

Fujishima, A. & Honda, K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358): 37-38.

Han, S., Li, J., Chen, X., Huang, Y., Liu, C., Yang, Y. & Li, W. 2012. Enhancing photoelectrochemical activity of nanocrystalline WO3 electrodes by surface tuning with Fe(III). International Journal of Hydrogen Energy 37(22): 16810-16816.

Haro, M., Abargues, R., Herraiz-Cardona, I., Martínez-Pastor, J. & Giménez, S. 2014. Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting. Electrochimica Acta 144: 64-70.

Hong, S.J., Lee, S., Jang, J.S. & Lee, J.S. 2011. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy & Environmental Science 4(5): 1781-1787.

Hu, D., Diao, P., Xu, D. & Wu, Q. 2016. Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Research 9(6): 1735-1751.

Jana, S.K., Majumder, T. & Banerjee, S. 2014. Enhanced photoelectrochemical property of gold nanoparticle sensitized TiO2 nanotube: A crucial investigation at electrode–electrolyte interface. Journal of Electroanalytical Chemistry 727: 99-103.

Johansson, M.B., Niklasson, G.A. & Österlund, L. 2012. Structural and optical properties of visible active photocatalytic WO3 thin films prepared by reactive dc magnetron sputtering. Journal of Materials Research 27(24): 3130-3140.

Jun, J., Ju, S., Moon, S., Son, S., Huh, D., Liu, Y., Kim, K. & Lee, H. 2020. The optimization of surface morphology of Au nanoparticles on WO3 nanoflakes for plasmonic photoanode. Nanotechnology 31(20): 204003.

Kim, M.H., Kim, C.S., Lee, H.W. & Kim, K. 1996. Temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol in aqueous solutions up to 175 °C. Journal of the Chemical Society, Faraday Transactions 92(24): 4951-4956.

Kwong, W.L., Savvides, N. & Sorrell, C.C. 2012. Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochimica Acta 75: 371-380.

Lee, J.Y. & Jo, W.K. 2016. Heterojunction-based two-dimensional N-doped TiO2/WO3 composite architectures for photocatalytic treatment of hazardous organic vapor. Journal Hazardous Materials 314: 22-31.

Li, J. & Wu, N. 2015. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catalysis Science & Technology 5(3): 1360-1384.

Li, Y., Yu, H., Zhang, C., Fu, L., Li, G., Shao, Z. & Yi, B. 2013a. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods. International Journal of Hydrogen Energy 38(29): 13023-13030.

Li, Z., Luo, W., Zhang, M., Feng, J. & Zou, Z. 2013b. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science 6(2): 347-370.

Lianos, P. 2011. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: A review of a re-emerging research field. Journal Hazardous Materials 185(2-3): 575-590.

Lui, Y., Chang, Y.S., Hsu, Y.J., Hwang, B.J. & Hsueh, C.H. 2019. Fabrication of WO3 photoanode decorated with Au nanoplates and its enhanced photoelectrochemical properties. Electrochimica Acta 321: 134674.

Mi, Y., Wen, L., Xu, R., Wang, Z., Cao, D., Fang, Y. & Lei, Y. 2016. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials 6(1): 1501496.

Minggu, L.J., Daud, W.R.W. & Kassim, M.B. 2010. An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 35(11): 5233-5244.

Minggu, L.J., Ng, K.H., Kadir, H.A. & Kassim, M.B. 2014. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction. Ceramics International 40(10): 16015-16021.

Ng, K.H., Minggu, L.J., Jaafar, N.A. & Kassim, M.B. 2018. Plasmonic resonance effect of aurum on photoelectrochemical performance of Cu2O photocathode. Sains Malaysiana 47(7): 1511-1516.

Ng, K.H., Minggu, L.J., Jaafar, N.A., Arifin, K. & Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes. Solar Energy Materials and Solar Cells 172: 361-367.

Ng, K.H., Minggu, L.J. & Kassim, M.B. 2013. Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting. International Journal of Hydrogen Energy 38(22): 9585-9591.

Nishanthi, S.T., Iyyapushpam, S., Sundarakannan, B., Subramanian, E. & Padiyan, D.P. 2015. Plasmonic silver nanoparticles loaded titania nanotube arrays exhibiting enhanced photoelectrochemical and photocatalytic activities. Journal of Power Sources 274: 885-893.

Oros-Ruiz, S., Zanella, R., López, R., Hernández-Gordillo, A. & Gómez, R. 2013. Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition-precipitation with urea. Journal Hazardous Materials 263: 2-10.

Peerakiatkhajohn, P., Butburee, T., Yun, J.H., Chen, H., Richards, R.M. & Wang, L. 2015. A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A 3(40): 20127-20133.

Rao, P.M., Cai, L., Liu, C., Cho, I.S., Lee, C.H., Weisse, J.M., Yang, P. & Zheng, X. 2014. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters 14(2): 1099-1105.

Raptis, D., Dracopoulos, V. & Lianos, P. 2017. Renewable energy production by photoelectrochemical oxidation of organic wastes using WO3 photoanodes. Journal of Hazardous Materials 333: 259-264.

Sheng, C., Wang, C., Wang, H., Jin, C., Sun, Q. & Li, S. 2017. Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. Journal Hazardous Materials 328: 127-139.

Tee, S.Y., Win, K.Y., Teo, W.S., Koh, L.D., Liu, S., Teng, C.P. & Han, M.Y. 2017. Recent progress in energy-driven water splitting. Advanced Science 4(5): 1600337.

Verma, A., Srivastav, A., Banerjee, A., Sharma, D., Sharma, S., Singh, U.B., Satsangi, V.R., Shrivastav, R., Avasthi, D.K. & Dass, S. 2013. Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes. Journal of Power Sources 315: 152-160.

Verma, P., Kuwahara, Y., Mori, K. & Yamashita, H. 2016. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation.  Journal of Materials Chemistry A 4(26): 10142-10150.

Wang, Y., Chen, K.S., Mishler, J., Cho, S.C. & Adroher, X.C. 2011. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research.  Applied Energy 88(4): 981-1007.

Yan, J., Wu, H., Li, P., Chen, H., Jiang, R. & Liu, S.F. 2017. Fe(III) doped NiS2 nanosheet: A highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A 5(21): 10173-10181.

Yang, Y., Xie, R., Liu, Y., Li, J. & Li, W. 2015. Effect of surface passivation on photoelectrochemical water splitting performance of WO3 vertical plate-like films. Catalysts 5(4): 2024-2038.

Ye, W., Long, R., Huang, H. & Xiong, Y. 2017. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C 5(50): 1008-1021.

Zhang, L., Herrmann, L.O. & Baumberg, J.J. 2015. Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting. Scientific Reports 5: 16660.

Zhang, L., Lin, C.Y., Valev, V.K., Reisner, E., Steiner, U. & Baumberg, J.J. 2014. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 10(19): 3970-3978.

Zhang, X. & Tang, A. 2012. Novel CuO/TiO2 nanocomposite films with a graded band gap for visible light irradiation. Materials Express 2(3): 238-244.

Zhang, Z., Yuan, Y., Fang, Y., Liang, L., Ding, H., Shi, G. & Jin, L. 2007. Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes. Journal of Electroanalytical Chemistry 610(2): 179-185.

Zhang, X., Lu, X., Shen, Y., Han, J., Yuan, L., Gong, L., Xu, Z., Bai, X., Wei, M., Tong, Y., Gao, Y., Chen, J., Zhou, J. & Wang, Z.L. 2011. Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chemical Communications 47(20): 5804-5806.

Zhu, J., Li, W., Li, J., Li, Y., Hu, H. & Yang, Y. 2013. Photoelectrochemical activity of NiWO4/ WO3 heterojunction photoanode under visible light irradiation. Electrochimica Acta 112: 191-198.

Zhu, L., Gamez, G., Chen, H., Chingin, K. & Zenobi, R. 2009. Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chemical Communications 5: 559-561.

Zhu, W., Liu, J., Yu, S., Zhou, Y. & Yan, X. 2016. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal Hazardous Materials 318: 407-416.

 

*Pengarang untuk surat-menyurat; email: lorna_jm@ukm.edu.my

   

 

sebelumnya