Sains Malaysiana 49(12)(2020): 3189-3196
http://dx.doi.org/10.17576/jsm-2020-4912-30
Characteristics of Gadolinium Doped Cerium at
Different Calcination Temperatures for Intermediate Temperature SOFC
(Pencirian Sifat Gadolinium Terdop Serium pada Suhu Kalsinasi Berbeza untuk Suhu Pertengahan SOFC)
DAMISIH1, ADE UTAMI HAPSARI1, AGUSTANHAKRI1, YELVIA DENI1, OKA PRADIPTA ARJASA1, MAHENDRA ANGGARAVIDYA1,
JAROT RAHARJO1* & MAHENDRA RAO SOMALU2
1Center for Materials Technology, Agency for the Assessment and Application
of Technology, Building 224, Puspiptek Area, South
Tangerang 15314, Indonesia
2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 6 Ogos 2020/Diterima: 11 September 2020
ABSTRACT
Gadolinium doped cerium (Ce0.9Gd0.1O1.95 or
GDC10) was successfully synthesized using the solid-state method. Commercially
available CeO2 and Gd2O3 powders were used as
starting materials. They were mixed in a ball mill where alumina balls were
added as grinding medium with the ratio to powders as of 1:2. The obtained
powders were dried and then calcined at temperatures of 600, 700 and 800 °C, respectively. The objective of this research was to investigate the effects of
calcination temperature on the properties of GDC10. The powders were
characterized using XRF, TGA, XRD, and PSA instruments.
XRF analysis shows the presence of Ce, Gd and O
elements in stoichiometric composition without any impurities. XRD analysis showed single phase structure of CeO2 where the crystallite size and lattice parameter increases and decreases,
respectively, as the calcination temperature increases. The smallest particle
size of 647.3 nm was obtained at the calcination temperature of 600 °C. The density of all GDC10 samples sintered at 1350 °C was found to be higher than 95%. In addition, the calcination
temperature also influenced the ionic conductivity where the highest obtained
value was 0.0153 S.cm-1 at 800 °C
for the sample calcinaed at 600 °C. The results suggest
that the calcination temperature affected the properties of GDC10 for solid
oxide fuel cell application.
Keywords: Ball milling; calcination temperature; IT-SOFC; solid-state
ABSTRAK
Gadolinium terdop cerium (Ce0.9Gd0.1O1.95 atau GDC10) telah berjaya disintesis dengan menggunakan kaedah keadaan pepejal. Serbuk CeO2 dan Gd2O3 yang tersedia komersial digunakan sebagai bahan pertama tindak balas. Kesemua bahan pemula telah dicampur dalam pengisar beboladengan bebola alumina digunakan sebagai medium pengisar dengan nisbah kepada serbuk ialah 1:2. Serbuk yang diperoleh dikeringkan dan kemudian masing-masing dikalsin pada suhu 600, 700 dan 800 °C. Objektif penyelidikan ini ialah untuk mengkaji kesan suhu pengkalsinanan ke atas sifat-sifat GDC10. Pencirian serbuk dilakukan dengan menggunakan alatan XRF, TGA, XRD dan PSA. Analisis XRF menunjukkan kehadiran unsur-unsur Ce, Gd dan O dalam komposisi stoikiometri tanpa kehadiran sebarang bahan bendasing. Analisis XRD menunjukkan struktur fasa tunggal CeO2dengan saiz kristal meningkat apabila suhu pengkalsinan bertambah manakala parameter kekisi sebaliknya. Saiz zarah terkecil 647.3 nm diperoleh pada suhu kalsinasi 600 °C. Ketumpatan semua sampel GDC10 yang disinter pada 1350 °C lebih tinggi daripada 95%. Di samping itu, suhu pengkalsinan juga mempengaruhi kekonduksian ion dengan nilai tertinggi yang diperoleh ialah 0.0153 S.cm-1 pada suhu 800 °C untuk sampel yang dikalsin pada suhu 600 °C. Keputusan kajian menunjukkan bahawa suhu pengkalsinan mempengaruhi sifat-sifat GDC10 untuk aplikasi sel fuel oksida pepejal.
Kata kunci: IT-SOFC; keadaan pepejal; pengilangan bebola; suhu kalsinasi
RUJUKAN
Anwar,
M., Ali, M.S.A., Muchtar, A. & Somalu, M.R. 2019. Synthesis and characterization of M-doped
ceria-ternary carbonate composite
electrolytes (M = erbium, lanthanum and strontium) for low-temperature solid oxide fuel cells. Journal of Alloys and Compounds 775: 571-580.
Anwar,
M., Ali, M.S.A., Baharuddin, N.A., Raduwan, N.F., Muchtar, A. & Somalu, M.R. 2018. Structural, optical and electrical
properties of Ce0.8Sm0.2-xErxO2-δ. Ceramic International 44(12):
13639-13648.
Ali,
S.A.M., Anwar, M., Abdalla, A.M., Somalu,
M.R. & Muchtar, A. 2017. Ce0.80Sm0.10Ba0.05Er0.05O2-δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceramic International 43: 1265-1271.
Arabacı, A. & Öksüzömer,
M.F. 2012. Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC
applications. Ceramics International 38(8): 6509-6515.
Awang, N., Jaafar, J. & Ismail, A.F. 2018. Thermal stability and
water content study of void-free electrospun SPEEK/cloisite membrane for direct methanol fuel cell
application. Polymers 194(10): 1-16.
Baral, A.K., Dasari, H.P.,
Kim, B.K. & Lee, J.H.
2013. Effect
of sintering aid (CoO) on transport properties of nanocrystalline Gd doped
ceria (GDC) materials prepared by co-precipitation method. Journal of Alloys and Compounds 575: 455-460.
Bi, H., Liu, X., Zhu, L., Sun, J., Yu, S., Yu, H.
& Pei, L. 2017. Effect of MgO addition and grain size on the electrical properties of Ce0.9Gd0.1O1.95 electrolyte for IT-SOFCs. International Journal of Hydrogen Energy 42(16):
11735-11744.
Burinskas, S., Adomonis, V., Dudonis, J., Laukaitis, G., Minialga, V. & Milčius, D. 2011. Synthesis and characterization of
GDC solid electrolytes obtained by solid state sintering of multilayer thin
films. Solid State Ionics 184(1):
14-18.
Caisso, M., Boulesteix, R., Picart, S., Maitre, A., Delahaye, T. & Ayral, A.
2017. Investigation of the sintering mechanisms of GDC
pellets obtained by the compaction of nanostructured oxide microspheres. Journal of
the American Ceramic Society 100(10): 4450-4460.
Cheng, J.G., Zha, S.W., Huang, J., Liu, X.Q.
& Meng,
G.Y. 2003. Sintering behavior and electrical
conductivity of Ce0.9Gd0.1O1.95 powder
prepared by the gel-casting process. Materials Chemistry and Physics 78(3): 791-795.
Choolaei, M., Cai, Q., Slade, R.C.T. & Horri,
B.A. 2018. Ceramics International. Ceramics
International 44(11): 13286-13292.
Chuang, C.C., Hsiang, H.I., Yen, F.S., Chen, C.C.
& Yang, S.J. 2013. Phase evolution and reduction
behavior of Ce0.6Zr0.4O2 powders prepared
using the chemical co-precipitation method. Ceramics International 39(2): 1717-1722.
Danaei, M., Dehghankhold,
M., Ataei, S., Davarani,
F.H., Javanmard, R., Dokhani,
A., Khorasani, S. & Mozafari,
M.R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2): 57.
Dikmen,
S., Aslanbaya, H., Dikmen, E. & Şahin, O. 2010. Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+,
La3+, and Nd3+ codoped ceria-based electrolytes for
intermediate temperature-solid oxide fuel cell. Journal of Power Sources 195(9): 2488-2495.
Fu, Y. 2014. Theoretical
and experimental study of solid oxide fuel cell (SOFC) using impedance spectra. Massachusetts
Institute of Technology, Ph.D. Thesis (Unpublished).
Fuentes,
R.O. & Baker, R.T. 2008. Synthesis and properties
of gadolinium-doped ceria solid solutions for IT-SOFC
electrolytes. International Journal of
Hydrogen Energy 33(13): 3480-3484.
Herle, J.V., Horita, T.,
Kawada, T., Sakai, N., Yokokawa, H. & Dokiya, M.
1996. Sintering behaviour and
ionic conductivity of yttria-doped ceria. Journal of the European Ceramic Society 16(9): 961-973.
Irshad, M., Siraj, K., Raza,
R., Ali, A., Tiwari, P., Zhu, B., Rafique, A., Ali,
A., Ullah, M.K. & Usman, A. 2016. A brief description of high temperature solid oxide fuel cell’s
operation, materials, design, fabrication technologies and performance. Applied
Sciences 6(3): 75.
Izquierdo, M.T., Turana, A., Garcíaa, S. & Maroto-Valera,
M.M. 2018. Optimization of Li4SiO4 synthesis conditions by solid state method for maximum CO2 capture
at high temperature. Journal of Materials
Chemistry A 6: 3249-3257.
Jais, A.A., Ali, S.A.M., Anwar, M., Somalu, M.R., Muchtar, A., Isahak, W.N.R.W., Tan, C.Y., Singh, R. & Brandon, N.P.
2017. Enhanced ionic
conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ)
electrolyte synthesized by the microwave assisted glycine nitrate process. Ceramic International 43: 8119-8125.
Kuphaldt, T.R. 2010. Lesson in Industrial
Instrumentation. California: Creative Commons Attribution International
Public License.
Lee, J.A., Lee, Y.E., Lee, H.C., Heo, Y.W., Lee, J.H. & Kim, J.J. 2016. Effect of Li2O content and sintering temperature on the grain
growth and electrical properties of Gd-doped CeO2 ceramics. Ceramics
International 42(9): 11170-11176.
Ma, Y., Wang, X., Raza,
R., Muhammed, M. & Zhu, B. 2010. Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. International Journal of Hydrogen Energy 35: 2580-2585.
Mahmud, L.S., Muchtar,
A. & Somalu, M.R. 2017. Challenges in fabricating
planar solid oxide fuel cells: A review. Renewable
and Sustainable Energy Reviews 72: 105-116.
Prasad, D.H., Son, J.W., Kim, B.K., Lee, H.W. & Lee, J.H. 2008. Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol-gel thermolysis process for IT-SOFCs. Journal of the
European Ceramic Society 28: 3107-3112.
Raharjo, J., Ali, S.A.M., Arjasa, O.P., Bakri, A., Damisih, Dewi, E.L., Muchtar, A. & Somalu, M.R. 2017. Synthesis and characterization of uniform-sized cubic
ytterbium scandium co-doped zirconium oxide (1Yb10ScSZ) nanoparticles by using
basic amino acid as organic precursor. International Journal of Hydrogen Energy 42(14): 9274-9283.
Raharjo, J., Dedikarni, W.D. & Wan, R. 2008. Perkembangan teknologi material pada sel bahan bakar padat suhu operasi menengah. Jurnal Sains Materi Indonesia 10(1): 28-34.
Somalu,
M.R., Andanastuti Muchtar, Wan Ramli Wan Daud & Brandon, N.P. 2017. Screen-printing inks for the fabrication of
solid oxide fuel cell films: A review. Renewable and Sustainable Energy Reviews 75:
426-439.
Sriyanti, I. & Abdullah, M. 2009. Sintesis nanopartikel Nd-CeO2 menggunakan metode simple
heating untuk aplikasi solid oxide fuel cell (SOFC). Jurnal Natur Indonesia 12(1): 1-8.
Sun, Q., Fu, Z. & Yang, Z.
2018. Effects of rare-earth doping on the ionic conduction of CeO2 in
solid oxide fuel cells. Ceramics International 44(4): 3707-3711.
Taer, E., Kurniasih, B., Sari,
F.P., Zulkifli, Taslim, R., Sugianto, Purnama, A., Apriwandi. & Susanti, Y.
2018. Particle size analysis on density, surface
morphology and specific capacitance of carbon electrode from rubberwood sawdust. AIP
Conference Proceedings 1927: 030006.
Winnubst, L., Ran, S., Speets,
E.A. & Blank, D.H.A. 2009. Analysis of reactions during sintering of CuO-doped 3Y-TZP nano-powder
composites. Journal of the European Ceramic Society 29(12): 2549-2557.
Yasuda, K., Uemura, K.
& Shiota, T. 2012. Sintering
and mechanical properties of gadolinium-doped ceria ceramics. Journal of Physics: Conference Series 339: 012006.
*Pengarang untuk surat-menyurat;
email: jarot.raharjo@bppt.go.id
|