Sains Malaysiana 49(12)(2020): 3117-3123

http://dx.doi.org/10.17576/jsm-2020-4912-24

 

Cobalt Sulfide as Photoelectrode of Photoelectrochemical Hydrogen Generation from Water

(Kobalt Sulfida sebagai Fotoelektrod untuk Penjanaan Hidrogen Fotoelektrokimia daripada Air)

 

MUSTAFID AMNA RAMBEY1, KHUZAIMAH ARIFIN1*, LORNA JEFFERY MINGGU1 & MOHAMMAD KASSIM1,2

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Chemistry Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 6 Ogos 2020/Diterima: 11 September 2020

 

ABSTRACT

This study aimed to synthesize and characterize cobalt sulfide deposited on FTO by hydrothermal method and investigate its photoelectrochemical (PEC) water splitting performance. Cobalt sulfide thin films were produced by annealing at two different temperatures, namely, 400 and 500 °C. X-ray diffraction (XRD) and Fourier transform Raman spectroscopy were used to characterize the phase structure. Scanning electron microscopy was used to observe the morphology. Ultraviolet-visible spectroscopy and linear sweep voltammetry analyses were used to determine the thin-film band gap and evaluate the PEC water splitting performance, respectively. From the XRD and Raman analyses, all the samples produced consisted of mixed phases of Co3S4 and Co9S8. However, each sample contained different percentage phases. The sample annealed at 400 °C contained more Co9S8, whereas that annealed at 500 °C contained comparable amounts of Co3S4 and Co9S8. The morphologies of pre-annealed samples showed vertical flakes with diameters around 200-250 nm and flake thickness around 25-50 nm. When the temperature was increased from pre-annealing temperature to 400 and 500 °C, several flakes were destructed and formed spherical-like clusters. The Tauc plot from absorption analysis showed that the samples annealed at 400 and 500 °C produced similar band gaps at ~2.0 eV. The PEC performance analysis results show that annealing at 400 °C produced the highest photocurrent density of 10 µA/cm2 at a potential of -0.7 V.

 

Keywords: Cobalt sulphide; hydrogen production; hydrothermal; photoelectrochemical

 

ABSTRAK

Kajian ini bertujuan untuk mensintesis dan mencirikan kobalt sulfida yang dimendapkan pada FTO dengan kaedah hidrotermal dan mengkaji keupayaannya untuk pemisahan air fotoelektrokimia (PEC). Filem nipis kobalt sulfida yang terhasil disepuhlindap pada dua suhu yang berbeza, iaitu: 400 dan 500 °C. Analisis pembelauan sinar-X (XRD) dan spektroskopi transformasi Fourier Raman (Raman) digunakan untuk mencirikan struktur fasa. Mikroskopi elektron imbasan (SEM) digunakan untuk memerhatikan morfologi. Analisis spektroskopi ultraungu-nampak (UV-Vis) dan voltametri kilasan linear digunakan untuk menentukan sela jalur dan menilai prestasi pemisahan air PEC filem nipis tersebut. Daripada analisis XRD dan Raman, semua filem nipis yang dihasilkan terdiri daripada fasa campuran Co3S4 dan Co9S8. Walau bagaimanapun, filem nipis tersebut berisi peratusan fasa yang berbeza. Filem nipis yang disepuhlindap pada suhu 400 °C berisi lebih banyak Co9S8, sedangkan yang disepuhlindap pada 500 °C berisi jumlah Co3S4 dan Co9S8 yang lebih berimbang. Morfologi sampel pra-sepuhlindap menunjukkan kepingan menegak dengan diameter ̴ 200-250 nm dan ketebalan ̴ 25-50 nm. Selepas suhu dinaikkan daripada suhu pra-sepuhlindap kepada 400 dan 500 °C, beberapa kepingan hancur dan membentuk gumpalan seperti sfera. Plot Tauc daripada analisis penyerapan menunjukkan bahawa filem nipis disepuhlindap pada suhu 400 dan 500 °C menghasilkan sela jalur yang hampir sama ̴ 2.0 eV. Hasil analisis prestasi PEC mendapati bahawa filem nipis disepuhlindap pada suhu 400 °C mempunyai ketumpatan arus tertinggi sebesar 10 μA/cm2 pada potensi -0,7 V vs Ag/AgCl.

 

Kata kunci: Fotoelektrokimia; hidroterma; kobalt sulfida; pengeluaran hydrogen

 

RUJUKAN

Adnan, M.A.B., Arifin, K., Minggu, L.J. & Kassim, M.B. 2018. Titanate-based perovskites for photochemical and photoelectrochemical water splitting applications: A review. International Journal of Hydrogen Energy 43(52): 23209-23220.

Boretti, A. & Rosa, L. 2019. Reassessing the projections of the world water development report. npj Clean Water 2(15): 1-6.

Chen, Z., Wan, Z., Yang, T., Zhao, M., Xingyan, Lv., Wang, H., Ren, X. & Mei, X. 2016. Preparation of nickel cobalt sulfide hollow nanocolloids with enhanced electrochemical property for supercapacitors application. Scientific Reports 6(25151): 1-8.

Cheng, L., Xiang, Q., Liao, Y. & Zhang, H. 2018. CdS-based photocatalysts. Energy & Environmental Science 11(6): 1362-1391.

Fujishima, A. & Honda, K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37-38.

Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N. & Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24: 38-50.

Hisatomi, T., Kubota, J. & Domen, K. 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 43(22): 7520-7535.

In, S.I. & Lee, H.S. 2012. Low temperature synthesis of transparent, vertically aligned anatase TiO2 nanowire arrays: Application to dye sensitized solar cells. Bulletin of the Korean Chemical Society 33(6): 1989-1992.

Kale, S.B., Lokhande, V.C., Marje, S.J., Patil, U.M., Kim, J.H. & Lokhande, C.D. 2020. Chemically deposited Co3S4 thin film: Morphology dependant electrocatalytic oxygen evolution reaction. Applied Physics A 126(3): 206-215.

Kristl, M., Dojer, B., Gyergyek, S. & Kristl, J. 2017. Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3(3): e00273-e00273.

Lei, M., Zhang, R., Yang, H.J. & Wang, Y.G. 2012. Synthesis of well dispersed cobalt disulfide and their photoluminescence and magnetic properties. Materials Letters 76: 87-89.

Liu, B., Kong, D., Zhang, J., Wang, Y., Chen, T., Cheng, C. & Yang, H.Y. 2016. 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. Journal of Materials Chemistry A 4(9): 3287-3296.

Ma, X., Zhang, W., Deng, Y., Zhong, C., Hu, W. & Han, X. 2018. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10): 4816-4824.

Makuła, P., Pacia, M. & Macyk, W. 2018. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. The Journal of Physical Chemistry Letters 9(23): 6814-6817.

Moridon, S.N.F., Salehmin, M.I., Mohamed, M.A., Arifin, K., Minggu, L.J. & Kassim, M.B. 2019. Cobalt oxide as photocatalyst for water splitting: temperature-dependent phase structures. International Journal of Hydrogen Energy 44(47): 25495-25504.

Muradov, M.B., Balayeva, O.O., Azizov, A.A., Maharramov, A.M., Qahramanli, L.R., Eyvazova, G.M. & Aghamaliyev, Z.A. 2018. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Physics & Technology 89: 255-262.

Nan, K., Du, H., Su, L. & Li, C.M. 2018. Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction. ChemistrySelect 3(25): 7081-7088.

Ng, K.H., Minggu, L.J., Jaafar, N.A., Arifin, K. & Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes. Solar Energy Materials and Solar Cells 172: 361-367.

Pawar, A.S. & Garje, S.S. 2015. Synthesis of Co9S8 and CoS nanocrystallites using Co(II) thiosemicarbazone complexes as single-source precursors. Bulletin of Materials Science 38(7): 1843-1850.

Rosman, N.N., Yunus, R.M., Minggu, L.J., Arifin, K., Salehmin, M.N.I., Mohamed, M.A. & Kassim, M.B. 2018. Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy 43(41): 18925-18945.

Salehmin, M.N.I., Minggu, L.J., Arifin, K., Yunus, R.M., Mohamed, M.A. & Kassim, M.B. 2019. Recent advances on state-of-the-art copper (I/II) oxide as photoelectrode for solar green fuel generation: Challenges and mitigation strategies. Applied Catalysis A 582(117104): 1-28.

Sathre, R., Greenblatt, J.B., Walczak, K., Sharp, I.D., Stevens, J.C., Ager, J.W. & Houle, F.A. 2016. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy & Environmental Science 9(3): 803-819.

Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P.E., Ekins, P., Shah, N. & Ward, K.R. 2019. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 12(2): 463-491.

Sultana, U.K., He, T., Du, A. & O'Mullane, A.P. 2017. An amorphous dual action electrocatalyst based on oxygen doped cobalt sulfide for the hydrogen and oxygen evolution reactions. RSC Advances 7(87): 54995-55004.

Sun, W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q. & Peng, L.M. 2008. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society 130(4): 1124-1125.

Wang, M., Chang, Y.S., Tsao, C.W., Fang, M.J., Hsu, Y.J. & Choy, K.L. 2019. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst. Chemical Communications 55(17): 2465-2468.

Wang, T., Liu, M. & Ma, H. 2017. Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials 7(6): 140-150.

Yin, P.F., Sun, L.L., Gao, Y.L. & Wang, S.Y. 2008. Preparation and characterization of Co9S8 nanocrystalline and nanorods. Bulletin of Materials Science 31(4): 593-596.

 

*Pengarang untuk surat-menyurat; email: khuzaim@ukm.edu.my

   

 

sebelumnya