Sains Malaysiana 49(12)(2020): 3081-3087
http://dx.doi.org/10.17576/jsm-2020-4912-20
Mechanical Strength Enhancement of Porous Nanocrystalline-Silicon
(pnc-Si) Membrane via Titanium-oxide (Ti-O) Coating
(Peningkatan Kekuatan Mekanikal Membran Silikon Nano-kristal Poros
(pnc-Si) dengan Penglitup Titanium-oksida (Ti-O))
RHONIRA LATIF*, MUHAMMAD FAHMI JAAFAR, MOHD FAIZAL AZIZ &
BURHANUDDIN YEOP MAJLIS
Institut
Kejuruteraan Mikro dan Nanoelektronik, Universiti Kebangsaan Malaysia, Jalan
Bangi, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 19 Ogos 2020/Diterima: 27 Ogos 2020
ABSTRACT
Porous
nanocrystalline silicon (pnc-Si) membrane is mainly studied as a blood
filtration membrane, mimicking the glomerulus filtration membrane of a human
kidney. However, the pnc-Si material itself is not hemocompatible and enormous
membrane area to thickness ratio makes the membrane to be easily fractured.
Silicon surface modification via titanium-oxide (Ti-O) thin film layer
deposition has been proven to be hemocompatible and the presence of Ti-O layer
has been numerically studied to give higher membrane flexural strength. In this
work, square pnc-Si membranes of 2 mm × 2 mm × 20 nm size have been fabricated
with and without Ti-O layer. Point loading-unloading nanoindentation method has
been performed and the membranes’ displacement behaviour subjected to point
loads is studied. The pnc-Si membranes with Ti-O layer were found to attain
higher fracture strength, membrane bending
stiffness and average hardness with the increase of ~20, ~11 and ~24%,
respectively, compared to bare pnc-Si membranes. The mechanical
strength of a free-standing pnc-Si membrane is improved by depositing a Ti-O
thin film layer on the membrane structure.
Keywords: Mechanical strength;
nanoindentation; pnc-Si membrane; Ti-O thin film
ABSTRAK
Membran
silikon nano-kristal poros (pnc-Si) dikaji sebagai membran penapisan darah,
meniru membran penapisan glomerulus buah pinggang manusia. Walau bagaimanapun,
bahan pnc-Si itu sendiri tidak hemoserasi dan
nisbah keluasan membran kepada ketebalan adalah sangat besar yang menjadikan
membran mudah patah. Pengubahsuaian permukaan silikon melalui pemendapan
lapisan filem tipis titanium-oksida (Ti-O) telah terbukti hemoserasi dan kehadiran lapisan Ti-O
telah dikaji secara analisis berangka bahawa lapisan tambahan ini mampu
memberikan kekuatan lenturan membran yang lebih tinggi. Dalam kajian ini,
membran pnc-Si yang berbentuk petak dan berukuran 2 mm × 2 mm × 20 nm telah
difabrikasi dengan dan tanpa lapisan Ti-O. Kaedah pelekukan nano
pemuatan-bongkar titik telah dilakukan dan tingkah laku anjakan membran yang
dikenakan daya titik dikaji. Membran pnc-Si dengan lapisan Ti-O didapati
mempunyai nilai kekuatan fraktur, kekakuan lenturan membran dan purata
kekerasan yang lebih baik dengan peningkatan masing-masing sebanyak ~ 20, ~ 11
dan ~ 24% berbanding dengan membran pnc-Si tanpa salut. Kekuatan mekanikal
membran pnc-Si yang berdiri bebas telah ditambah baik dengan meletakkan lapisan
filem nipis Ti-O pada struktur membran.
Kata kunci: Filem nipis Ti-O; kekuatan mekanik; membran
pnc-Si; pelekukan nano
RUJUKAN
Agrawal, A.A., Nehilla,
B.J., Reisig, K.V., Gaborski, T.R., Fang, D.Z., Striemer, C.C., Fauchet, P.M.
& McGrath, J.L. 2010. Porous
nanocrystalline silicon membranes as highly permeable and molecularly thin
substrates for cell culture. Biomaterials 31(20): 5408-5417.
Ahmadi, M., Gorbet, M. &
Yeow, J.T.W. 2013. In vitro clearance
and hemocompatibility assessment of ultrathin nanoporous silicon membranes for
hemodialysis applications using human whole blood. Blood Purification 35(4): 305-313.
Albrektsson, T., Brånemark,
P.I., Hansson, H.A., Kasemo, B., Larsson, K., Lundström, I., McQueen, D.H.
& Skalak, R. 1983. The interface
zone of inorganic implants in vivo:
Titanium implants in bone. Annals of
Biomedical Engineering 11(1): 1-27.
DesOrmeaux, J.P.S., Winans,
J.D., Wayson, S.E., Gaborski, T.R., Khire, T.S., Striemer, C.C. & McGrath,
J.L. 2014. Nanoporous silicon nitride
membranes fabricated from porous nanocrystalline silicon templates. Nanoscale 6(18): 10798-10805.
Fang, D.Z., Striemer, C.C.,
Gaborski, T.R., McGrath, J.L. & Fauchet, P.M. 2010. Methods for controlling
the pore properties of ultra-thin nanocrystalline silicon membranes. Journal of Physics: Condensed Matter 22(45): 454134.
Gaborski, T.R., Snyder,
J.L., Striemer, C.C., Fang, D.Z., Hoffman, M., Fauchet, P.M. & McGrath,
J.L. 2010. High-performance separation of nanoparticles with ultrathin porous
nanocrystalline silicon membranes. ACS Nano 4(11): 6973-6981.
Huang, N., Yang, P., Leng,
Y.X., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Ding, P.D., Xi, T.F. &
Leng, Y. 2003. Hemocompatibility of titanium oxide films. Biomaterials 24(13): 2177-2187.
Jaafar, M.F., Latif, R.
& Majlis, B.Y. 2018. Influence of titanium oxide coating on mechanical
properties of porous nanocrystalline silicon membrane. 2018 IEEE International Conference on Semiconductor Electronics (ICSE). pp. 49-52.
Johnson, D.G., Khire, T.S.,
Lyubarskaya, Y.L., Smith, K.J.P., DesOrmeaux, J.P.S., Taylor, J.G., Gaborski,
T.R., Shestopalov, A.A., Striemer, C.C. & McGrath, J.L. 2013. Ultrathin
silicon membranes for wearable dialysis. Advances
in Chronic Kidney Disease 20(6): 508-515.
Jȯzwik, M., Delobelle, P., Gorecki,
C., Sabac, A., Nieradko, L., Meunier, C. & Munnik, F. 2004. Optomechanical
characterisation of compressively prestressed silicon oxynitride films deposited
by plasma-enhanced chemical vapour deposition on silicon membranes. Thin Solid Films 468(1-2): 84-92.
Kasemo, B. & Lausmaa, J.
1985. Metal selection and surface characteristics. In Tissue-Integrated Prostheses, edited by Brånemark, P-I., Zarb, G.
& Albrektsson, T. Chicago: Quintessence Publishing Co.
Lausmaa, J., Kasemo, B.
& Mattsson, H. 1990. Surface spectroscopic characterization of titanium
implant materials. Applied Surface
Science 44(2): 133-146.
Li, Y., Chen, Y., Liu, J.R., Hu, Q.M. &
Yang, R. 2016. Cooperative effect of silicon and other alloying elements on
creep resistance of titanium alloys: Insight from first-principles
calculations. Scientific Reports 6:
30611.
Martins, P., Delobelle, P., Malhaire, C.,
Brida, S. & Barbier, D. 2009. Bulge test and AFM point deflection method,
two technics for the mechanical characterisation of very low stiffness
freestanding films. The European Physical
Journal Applied Physics 45(1): 10501.
Merle, B., Nicholson, K.S., Herbert, E.G.
& Göken, M. 2016. An improved method for point deflection measurements on
rectangular membranes. Materials &
Design 109: 485-491.
Ozaki,
T., Koga, T., Fujitsuka, N., Makino, H., Hohjo, H. & Kadoura, H. 2018. Biaxial flexure testing of free-standing
thin film membrane with nanoindentation system. Sensors and Actuators A: Physical 278: 48-59.
Parr, G.R., Gardner, L.K.
& Toth, R.W. 1985. Titanium: The mystery metal of implant dentistry. Dental
materials aspects. Journal of Prosthetic
Dentistry 54(3): 410-414.
Poilane, C., Delobelle, P., Lexcellent, C.,
Hayashi, S. & Tobushi, H. 2000. Analysis of the mechanical behavior of
shape memory polymer membranes by nanoindentation, bulging and point membrane
deflection tests. Thin Solid Films 379(1-2): 156-165.
Qin, H., Jin, J., Peng, X. & Ichinose,
I. 2010. Mechanical properties of free-standing single layers of metallic
nanocrystals. Journal of Materials
Chemistry 20(5): 858-861.
Steinemann, S. 1991. The
properties of titanium. In Oral
Implantol: Basics, ITI Hollow Cylinder System, edited by Schroeder, A.,
Sutter, F. & Krekeler, G. Stuttgart: Thieme.
Wang, T.H., Fang, T.H., Kang, S.H. &
Lin, Y.C. 2007. Nanoindentation characteristics of clamped freestanding Cu
membranes. Nanotechnology 18(13):
135701.
Williams, D.F. 1981. Fundamental Aspects of Biocompatibility.
Boca Raton: CRC Press.
*Pengarang untuk surat-menyurat; email: rhonira@ukm.edu.my
|