Sains Malaysiana 49(12)(2020): 3065-3072
http://dx.doi.org/10.17576/jsm-2020-4912-18
Rapid Prototyping of Micropillars using Digital Light Process 3D Printing
Technique
(Pemprototip Pantas Tiang Mikro menggunakan Teknik Pencetakan Proses Cahaya Digital 3D)
NUR ALIYAH ALWANI MOHD NAZAM, JUMRIL YUNAS*, ABDUL
HAFIZ MAT SULAIMAN, MUHAMAD, RAMDZAN BUYONG & AZRUL AZLAN HAMZAH
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 18 Ogos 2020/Diterima: 27 Ogos 2020
ABSTRACT
In this paper, we discuss a technique to fabricate a three-dimensional (3D)
printed micropillars structure of microfluidic system.
The developed system consists of microchannels,
chambers, and micropillars. The creation of arrays of
pillars were the focus of the study. The structure is fabricated using a 3D
printing technique called Digital Light Process (DLP). In this paper, we
examine the potential use of the 3D printing approaches for the fabrication of microfilter and micromixer devices integrated with microfluidic channels. Our 3D printing process shows
that micropillars with diameters between 200 and 400
µm can be fabricated using a DLP 3D printer machine by optimizing the
preparation process and post processing parameters. Later, SEM analysis shows
that micropillars with high aspect ratio and straight
side wall were achieved. The DLP 3D printer is the most suitable and reliable
technique that can produce the smallest dimension compared to other types of 3D
printer that shows a promising method for the rapid prototyping of microfluidic
devices for biomedical application.
Keywords: 3D
printer; digital light process; microfluidic; microfilter and mixer; micropillars; rapid prototyping
ABSTRAK
Dalam makalah ini kami membincangkan teknik memfabrikasi struktur tiga dimensi (3D) sistemmikrofluida. Sistem
yang dibangunkan terdiri daripada saluran mikro, ruang dan tiang mikro.
Penciptaan tiang susunan adalah fokus kajian. Struktur tersebut dibuat
menggunakan teknik percetakan 3D yang disebut sebagai Proses Cahaya Digital
(DLP). Dalam makalah ini, kami meneliti potensi penggunaan pendekatan
pencetakan 3D untuk pembuatan peranti turas mikro dan pencampur mikro yang
disatukan dengan saluran mikrofluida. Proses pencetakan 3D kami menunjukkan
bahawa tiang mikro dengan diameter antara 200 dan 400 µm dapat dibuat
menggunakan mesin pencetak 3D DLP dengan mengoptimumkan proses penyediaan dan
parameter pasca pemprosesan. Kemudian, analisis SEM menunjukkan bahawa tiang
mikro dengan nisbah aspek tinggi dan dinding sisi lurus dapat dicapai. Pencetak
3D DLP adalah teknik yang paling sesuai dan dipercayai boleh menghasilkan
dimensi terkecil berbanding jenis pencetak 3D yang lain dan menunjukkan kaedah
ini yang menjanjikan untuk pemprototaip pantas peranti mikrofluida untuk
aplikasi bioperubatan.
Kata
kunci: Mikrofluida; penapis mikro dan pengadun; pencetak 3D; proses cahaya
digital; tiang mikro
RUJUKAN
Alemnis, A.G.
2020. What are Micropillars and How are
They Produced? https://www.azom.com/article.aspx?ArticleID=18867.
Ali,
W.A.F.W., Hamzah, A.A., Mustafa, K.A., Majlis, B.Y. & Yunas, J. 2018.
Numerical study of zigzag micro mixer with 3D channel dimension. 2018 IEEE International Conference on
Semiconductor Electronics (ICSE). pp. 117-120.
Ali,
W.A.F.W., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Numerical study of
laminar flow in pillared-micro channel. 2017 IEEE Regional Symposium
on Micro and Nanoelectronics (RSM). pp. 71-74.
Bazaz,
S.R., Rouhi, O., Raoufi, M.A., Ejeian, F., Asadnia, M., Jin, D. & Warkiani,
M.E. 2020. 3D printing of inertial microfluidic devices. Scientific Reports 10(1): 1-14.
Bertana,
V., De Pasquale, G., Ferrero, S., Scaltrito, L., Catania, F., Nicosia, C.,
Marasso, S.L., Cocuzza, M. & Perrucci, F. 2019. 3D printing with the
commercial UV-curable standard blend resin: Optimized process parameters
towards the fabrication of tiny functional parts. Polymers 11(2): 292.
Buyong,
M.R., Yunas, J., Hamzah, A.A., Majlis, B.Y., Larki, F. & Abd Aziz, N. 2015.
Design, fabrication and characterization of dielectrophoretic microelectrode
array for particle capture. Microelectronics
International 32(2): 96-102.
Hamzah,
A.A., Abidin, H.E.Z., Majlis, B.Y., Nor, M.M., Ismardi, A., Sugandi, G., Tiong,
T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched
membranes with precisely sized micropores for biological fluids
microfiltration. J. Micromech. Microeng. 23: 074007.
Hu, Y.,
Yuan, H., Liu, S., Ni, J., Lao, Z., Xin, C., Pan, D., Zhang, Y., Zhu, W., Li,
J. & Wu, D. 2020. Chiral assemblies of laser-printed micropillars directed
by asymmetrical capillary force. Advanced
Materials 32(31): 2002356.
Mustafa,
K.A., Majlis, B.Y., Yunas, J. & Hamzah, A.A. 2019. Fabrication of
micromachined uniform microtrench arrays for silicon based filtration membrane. Sains Malaysiana 48(6): 1171-1178.
Mustafa,
K.A., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Application of BOE and
KOH+IPA for fabrication of smooth nanopore membrane surface for artificial
kidney. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM).
pp. 18-21.
Pawinanto,
R.E., Yunas, J. & Hashim, A.M. 2019. Design optimization of active
microfluidic mixer incorporating micropillar on flexible membrane. Microsystem
Technologies 25(4): 1203-1209.
Shaaban,
A.M.F., Hafez, A.I., Abdel-Fatah, M.A., Abdel-Monem, N.M. & Mahmoud, M.H.
2016. Process engineering optimization of nanofiltration unit for the treatment
of textile plant effluent in view of solution diffusion model. Egyptian
Journal of Petroleum 25(1): 79-90.
Sochol,
R.D., Sweet, E., Glick, C.C., Wu, S.Y., Yang, C., Restaino, M. & Lin, L.
2018. 3D printed microfluidics and microelectronics. Microelectronic
Engineering 189: 52-68.
Vasilescu,
S.A., Bazaz, S.R., Jin, D., Shimoni, O. & Warkiani, M.E. 2020. 3D printing
enables the rapid prototyping of modular microfluidic devices for particle
conjugation. Applied Materials Today 20: 100726.
Waheed,
S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B. &
Breadmore, M.C. 2016. 3D printed microfluidic devices: Enablers and barriers. Lab
on a Chip 16(11): 1993-2013.
Yaakub, T.N.T., Yunas, J., Latif,
R., Hamzah, A.A., Wee, M.F.M.R. & Majlis, B.Y. 2018. Surface modification of electroosmotic
silicon microchannel using thermal dry oxidation. Micromachines 9(5): 222.
Yilmaz, B. & Yilmaz, F. 2018. Lab-on-a-chip technology and its
applications. In Omics Technologies and
Bio-Engineering, edited by Barh, D. & Azevedo, V. London: Academic Press. pp. 145-153.
Yunas, J., Mulyanti, B., Hamidah, I., Said, M.M., Pawinanto,
R.E., Ali, W.A.F.W., Subandi, A., Hamzah,
A.A., Latif, R. & Majlis, B.Y. 2020.
Polymer-based MEMS electromagnetic actuator for biomedical application: A
review. Polymers 12(5): 1184.
*Pengarang untuk surat-menyurat; email: jumrilyunas@ukm.edu.my
|