Sains Malaysiana 49(12)(2020): 3065-3072

http://dx.doi.org/10.17576/jsm-2020-4912-18

 

Rapid Prototyping of Micropillars using Digital Light Process 3D Printing Technique

(Pemprototip Pantas Tiang Mikro menggunakan Teknik Pencetakan Proses Cahaya Digital 3D)

 

NUR ALIYAH ALWANI MOHD NAZAM, JUMRIL YUNAS*, ABDUL HAFIZ MAT SULAIMAN, MUHAMAD, RAMDZAN BUYONG & AZRUL AZLAN HAMZAH

 

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 18 Ogos 2020/Diterima: 27 Ogos 2020

 

ABSTRACT

In this paper, we discuss a technique to fabricate a three-dimensional (3D) printed micropillars structure of microfluidic system. The developed system consists of microchannels, chambers, and micropillars. The creation of arrays of pillars were the focus of the study. The structure is fabricated using a 3D printing technique called Digital Light Process (DLP). In this paper, we examine the potential use of the 3D printing approaches for the fabrication of microfilter and micromixer devices integrated with microfluidic channels. Our 3D printing process shows that micropillars with diameters between 200 and 400 µm can be fabricated using a DLP 3D printer machine by optimizing the preparation process and post processing parameters. Later, SEM analysis shows that micropillars with high aspect ratio and straight side wall were achieved. The DLP 3D printer is the most suitable and reliable technique that can produce the smallest dimension compared to other types of 3D printer that shows a promising method for the rapid prototyping of microfluidic devices for biomedical application.

 

Keywords: 3D printer; digital light process; microfluidic; microfilter and mixer; micropillars; rapid prototyping

 

ABSTRAK

Dalam makalah ini kami membincangkan teknik memfabrikasi struktur tiga dimensi (3D) sistemmikrofluida. Sistem yang dibangunkan terdiri daripada saluran mikro, ruang dan tiang mikro. Penciptaan tiang susunan adalah fokus kajian. Struktur tersebut dibuat menggunakan teknik percetakan 3D yang disebut sebagai Proses Cahaya Digital (DLP). Dalam makalah ini, kami meneliti potensi penggunaan pendekatan pencetakan 3D untuk pembuatan peranti turas mikro dan pencampur mikro yang disatukan dengan saluran mikrofluida. Proses pencetakan 3D kami menunjukkan bahawa tiang mikro dengan diameter antara 200 dan 400 µm dapat dibuat menggunakan mesin pencetak 3D DLP dengan mengoptimumkan proses penyediaan dan parameter pasca pemprosesan. Kemudian, analisis SEM menunjukkan bahawa tiang mikro dengan nisbah aspek tinggi dan dinding sisi lurus dapat dicapai. Pencetak 3D DLP adalah teknik yang paling sesuai dan dipercayai boleh menghasilkan dimensi terkecil berbanding jenis pencetak 3D yang lain dan menunjukkan kaedah ini yang menjanjikan untuk pemprototaip pantas peranti mikrofluida untuk aplikasi bioperubatan.

 

Kata kunci: Mikrofluida; penapis mikro dan pengadun; pencetak 3D; proses cahaya digital; tiang mikro

 

RUJUKAN

Alemnis, A.G. 2020. What are Micropillars and How are They Produced? https://www.azom.com/article.aspx?ArticleID=18867.

Ali, W.A.F.W., Hamzah, A.A., Mustafa, K.A., Majlis, B.Y. & Yunas, J. 2018. Numerical study of zigzag micro mixer with 3D channel dimension. 2018 IEEE International Conference on Semiconductor Electronics (ICSE). pp. 117-120.

Ali, W.A.F.W., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Numerical study of laminar flow in pillared-micro channel. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). pp. 71-74.

Bazaz, S.R., Rouhi, O., Raoufi, M.A., Ejeian, F., Asadnia, M., Jin, D. & Warkiani, M.E. 2020. 3D printing of inertial microfluidic devices. Scientific Reports 10(1): 1-14.

Bertana, V., De Pasquale, G., Ferrero, S., Scaltrito, L., Catania, F., Nicosia, C., Marasso, S.L., Cocuzza, M. & Perrucci, F. 2019. 3D printing with the commercial UV-curable standard blend resin: Optimized process parameters towards the fabrication of tiny functional parts. Polymers 11(2): 292.

Buyong, M.R., Yunas, J., Hamzah, A.A., Majlis, B.Y., Larki, F. & Abd Aziz, N. 2015. Design, fabrication and characterization of dielectrophoretic microelectrode array for particle capture. Microelectronics International 32(2): 96-102.

Hamzah, A.A., Abidin, H.E.Z., Majlis, B.Y., Nor, M.M., Ismardi, A., Sugandi, G., Tiong, T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. J. Micromech. Microeng. 23: 074007.

Hu, Y., Yuan, H., Liu, S., Ni, J., Lao, Z., Xin, C., Pan, D., Zhang, Y., Zhu, W., Li, J. & Wu, D. 2020. Chiral assemblies of laser-printed micropillars directed by asymmetrical capillary force. Advanced Materials 32(31): 2002356.

Mustafa, K.A., Majlis, B.Y., Yunas, J. & Hamzah, A.A. 2019. Fabrication of micromachined uniform microtrench arrays for silicon based filtration membrane. Sains Malaysiana 48(6): 1171-1178.

Mustafa, K.A., Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2017. Application of BOE and KOH+IPA for fabrication of smooth nanopore membrane surface for artificial kidney. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). pp. 18-21.

Pawinanto, R.E., Yunas, J. & Hashim, A.M. 2019. Design optimization of active microfluidic mixer incorporating micropillar on flexible membrane. Microsystem Technologies 25(4): 1203-1209.

Shaaban, A.M.F., Hafez, A.I., Abdel-Fatah, M.A., Abdel-Monem, N.M. & Mahmoud, M.H. 2016. Process engineering optimization of nanofiltration unit for the treatment of textile plant effluent in view of solution diffusion model. Egyptian Journal of Petroleum 25(1): 79-90.

Sochol, R.D., Sweet, E., Glick, C.C., Wu, S.Y., Yang, C., Restaino, M. & Lin, L. 2018. 3D printed microfluidics and microelectronics. Microelectronic Engineering 189: 52-68.

Vasilescu, S.A., Bazaz, S.R., Jin, D., Shimoni, O. & Warkiani, M.E. 2020. 3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation. Applied Materials Today 20: 100726.

Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B. & Breadmore, M.C. 2016. 3D printed microfluidic devices: Enablers and barriers. Lab on a Chip 16(11): 1993-2013.

Yaakub, T.N.T., Yunas, J., Latif, R., Hamzah, A.A., Wee, M.F.M.R. & Majlis, B.Y. 2018. Surface modification of electroosmotic silicon microchannel using thermal dry oxidation. Micromachines 9(5): 222.

Yilmaz, B. & Yilmaz, F. 2018. Lab-on-a-chip technology and its applications. In Omics Technologies and Bio-Engineering, edited by Barh, D. & Azevedo, V. London: Academic Press. pp. 145-153.

Yunas, J., Mulyanti, B., Hamidah, I., Said, M.M., Pawinanto, R.E., Ali, W.A.F.W., Subandi, A., Hamzah, A.A., Latif, R. & Majlis, B.Y. 2020. Polymer-based MEMS electromagnetic actuator for biomedical application: A review. Polymers 12(5): 1184.

 

*Pengarang untuk surat-menyurat; email: jumrilyunas@ukm.edu.my

   

 

sebelumnya