Sains Malaysiana 49(12)(2020): 3055-3063

http://dx.doi.org/10.17576/jsm-2020-4912-17

 

Seed-Mediated Synthesis and Photoelectric Properties of Selenium Doped Zinc Oxide Nanorods

(Sintesis Bermediasi Benih dan Sifat Fotoelektrik Selenium Terdop Nanorod Zink Oksida)

 

ARI SULISTYO RINI1*, YOLANDA RATI1, MIRANTI AGUSTIN1,YANUAR HAMZAH1  & AKRAJAS ALI UMAR2

 

1Department of Physics, Faculty of Mathematics and Natural Science, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas Km 12.5, Simpang Baru, Pekanbaru, 28293, Indonesia

 

2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 18 Ogos 2020/Diterima: 27 Ogos 2020

 

ABSTRACT

Pristine ZnO and selenium doped ZnO (Se-ZnO) nanorods were successfully synthesized using seed-mediated hydrothermal method. The growth solution of both pure and Se-doped ZnO nanorods employed zinc nitrate hexahydrate (ZNH) and hexamethylenetetramine (HMT) as a precursor and surfactant, respectively. As a dopant source, selenium salt solution was obtained by reacting selenium powder with sodium borohydride at low temperature. The as-prepared pure ZnO and Se-doped ZnO nanorods were characterized using field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-Visible spectroscopy (UV-Vis), and Photoluminescence (PL) spectroscopy. FESEM images show that the geometric shape of Se-ZnO nanoparticles is nanorods with a hexagonal cross-section. The XRD pattern shows the diffraction peak of the sample at the angles of 2θ: 34.44°, 36.25° and 47.54° which represents the hkl plane of (002), (101) and (102), respectively. The crystalline size calculated from XRD data is found to be in the range of 35-42 nm. The UV-Vis spectrum shows that Se-ZnO nanorods strong absorption peaks appeared in the range of 300-380 nm for all samples. Se doping has slightly altered the band gap energy of pure ZnO nanorods around 0.01 eV. The peak of the photoluminescence spectra of the sample at 470 nm indicates the blue emission band.

 

Keywords: FESEM; PL spectra; selenium doping; UV-Vis; XRD; zinc oxide

 

ABSTRAK

ZnO asli dan selenium terdop nanorod ZnO (Se-ZnO) berjaya disintesis menggunakan kaedah hidroterma biji benih. Larutan pertumbuhan bagi kedua-dua ZnO asli dan Se-ZnO adalah menggunakan zink nitrat heksahidrat (ZNH) dan hexametilenetetramina (HMT) masing-masing sebagai pelopor dan surfaktan. Sebagai sumber pengedopan, larutan garam selenium diperoleh daripada tindak balas serbuk selenium dengan natrium borohidrida pada suhu rendah. ZnO asli dan Se-ZnO dicirikan menggunakan mikroskopi elektron imbasan pancaran medan (FESEM), pembelauan sinar-X (XRD), spektroskopi UV (UV-Vis) dan spektroskopi fotoluminesen (PL). Imej FESEM menunjukkan bentuk geometri nanozarah Se-ZnO adalah nanorod dengan keratan rentas heksagon. Corak XRD pula menunjukkan puncak belauan sampel pada sudut 2θ: 34.44°, 36.25° dan 47.54° yang mewakili satah hkl masing-masing pada (002), (101) dan (102). Saiz kristal yang dihitung daripada data XRD berada dalam julat 35-42 nm. Spektrum UV-Vis menunjukkan bahawa puncak penyerapan nanorod Se-ZnO muncul pada julat 300-380 nm untuk semua sampel. Pengedopan Se mengubah sedikit tenaga jurang jalur nanorod ZnO tulen sekitar 0.01 eV. Puncak spektra fotoluminesen pula muncul pada 470 nm menunjukkan jalur pancaran biru.

 

Kata kunci: FESEM; pengedopan selenium; spektra PL; UV-Vis; XRD; zink oksida

 

RUJUKAN

Abrar, I., Dee, C.F., Gebeshuber, I.C. & Majlis, B.Y. 2012. Growth and characterization of indium doped ZnO nanowires using vapor transport deposition method. Advanced Materials Research 364: 202-205.

Achouri, F., Corbel, S., Balan, L., Mozet, K., Girot, E., Medjahdi, G., Said, M.B., Ghrabi, A. & Schneider, R. 2016. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Materials and Design 101: 309-316.

Alexandrov, A., Zvaigzne, M., Lypenko, D., Nabiev, I. & Samokhvalov, P. 2020. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Scientific Reports 10(1): 1-11.

Alshammari, A.S., Chi, L., Chen, X., Bagabas, A., Kramer, D., Alromaeh, A. & Jiang, Z. 2015. Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC Advances 5(35): 27690-27698.

Ashari, F., Chyi, J.L.Y., Talib, Z.A., Yunus, W.W.W., Jian, L.Y. & Kee, L.H. 2016. Optical characterization of zinc selenide compound prepared through hydrothermal method. Materials Science Forum 846: 237-244.

Bae, S.Y., Seo, H.W. & Park, J. 2004. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. Journal of Physical Chemistry B 108(17): 5206-5210.

Bangbai, C., Chongsri, K., Pecharapa, W. & Techitdeera, W. 2013. Effect of Al and N doping on structural and optical properties of sol-gel derives ZnO thin films. Sains Malaysiana 42(2): 239-246.

Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S. & Huang, C.M. 2008. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry 199(2-3): 170-178.

Chen, Y., Wang, L., Wang, W. & Cao, M. 2017. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties. Materials Chemistry and Physics 199: 416-423.

Corral-Aguado, A., Martínez-Torres, P., Gomez-Ortiz, N., Pichardo-Molina, J., De la Rosa-García, S., Borjas-García, S.E. & Medina, A. 2016. Synthesis of Mg doped ZnO with hexagonal shape by hydrothermal method. Microscopy and Microanalysis 22(S3): 1882-1883.

Duan, L., Lin, B., Zhang, W., Zhong, S. & Fu, Z. 2006. Enhancement of ultraviolet emissions from ZnO films by Ag doping. Applied Physics Letters 88(23): 1-4.

Janotti, A. & Van De Walle, C.G. 2009. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics 72(12): 1-29.

Kannappan, P. & Dhanasekaran, R. 2014. Studies on structural and optical properties of ZnSe and ZnSSe single crystals grown by CVT method. Journal of Crystal Growth 401: 691-696.

Karim, S.S.A., Dee, C.F., Majlis, B.Y. & Mohamed, M.A. 2019. Recent progress on fabrication of zinc oxide nanorod-based field effect transistor biosensors. Sains Malaysiana 48(6): 1301-1310.

Kim, S., Park, H., Nam, G., Yoon, H., Kim, B., Ji, I., Kim, Y., Kim, I., Park, Y., Kang, D. & Leem, J.Y. 2014. Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties. Electronic Materials Letters 10: 81-87.

Kumar, S.O., Soundeswaran, S. & Dhanasekaran, R. 2002. Thermodynamic calculations and growth of ZnSe single crystals by chemical vapor transport technique. Crystal Growth and Design 2(6): 585-589.

Luo, J., Wang, Y. & Zhang, Q. 2018. Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy 163: 289-306.

Mustafa, M.M., Ahmed, H.A.M., Taha, K.K. & Mohammed, R. 2018. Synthesis and characterization of selenium doped zinc oxide (ZnO-Se) nanoparticles. International Journal of Current Research 10(9): 73644-73648.

Nenavathu, B.P., Sharma, A. & Dutta, R.K. 2018. Se doped ZnO nanoparticles with improved catalytic activity in degradation of Cholesterol. Journal of Water and Environmental Technology 3(4): 289-300.

Patterson, A.L. 1939. The Scherrer formula for X-ray particle size determination. Physical Reviews 56(10): 978-982.

Rahman, M.Y.A., Roza, L., Umar, A.A. & Salleh, M.M. 2016. Effect of dimethyl borate composition on the performance of boron doped ZnO dye-sensitized solar cell (DSSC). Journal of Materials Science: Materials in Electronics 27(3): 2228-2234.

Rong, P., Ren, S. & Yu, Q. 2019. Fabrications and applications of ZnO nanomaterials in flexible functional devices - A review. Critical Reviews in Analytical Chemistry 49(4): 336-349.

Singh, S.C. 2013. Zinc oxide nanostructures: Synthesis, characterizations and device applications. Journal of Nanoengineering and Nanomanufacturing 3(4): 283-310.

Sutanto, H., Wibowo, S., Nurhasanah, I., Hidayanto, E. & Hadiyanto, H. 2016. Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. International Journal of Chemical Engineering 2016: 1-6.

Taha, K.K., Mustafa, M.M., Ahmed, H.A.M. & Talab, S. 2019. Selenium zinc oxide (Se/ZnO) nanoparticles: Synthesis, characterization, and photocatalytic activity. Zeitschrift für Naturforschung A 74(12): 1043-1056.

Tan, R., Zhang, Y.L., Yang, Y., Song, W., Xu, T.F. & Nie, Q. 2009. Pyroelectric properties of ZnO-based nanostructured polycrystalline ceramics. International Symposium on Photoelectronic Detection and Imaging 2009: Material and Device Technology for Sensors. doi.org/10.1117/12.836518.

Thangavel, R. & Chang, Y.C. 2012. Investigations on structural, optical and electrical properties of p-type ZnO nanorods using hydrothermal method. Thin Solid Films 520(7): 2589-2593.

Thu, T.V. & Maenosono, S. 2010. Synthesis of high-quality Al-doped ZnO nanoink. Journal of Applied Physics 107(1): 1-6.

Walsh, A., Da Silva, J.L.F. & Wei, S.H. 2008. Origins of band-gap renormalization in degenerately doped semiconductors. Physical Review B 78(7): 075211.

Wang, M., Ren, F., Zhou, J., Cai, G., Cai, L., Hu, Y., Wang, D., Liu, Y., Guo, L. & Shen, S. 2015. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Scientific Reports 5: 1-13.

Wang, X., Huang, H., Liang, B., Liu, Z., Chen, D. & Shen, G. 2013. ZnS nanostructures: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences 38(1): 57-90.

Wang, Y., Zhong, M., Wang, W., Wang, Q., Wu, W. & Luo, X. 2019. Effects of ZnSe modification on the perovskite films and perovskite solar cells based on ZnO nanorod arrays. Applied Surface Science 495: 1-30.

Yilmaz, S., McGlynn, E., Bacaksiz, E., Cullen, J. & Chellappan, R.K. 2012. Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chemical Physics Letters 525-526: 72-76.

Zakaria, M.R., Johari, S., Ismail, M.H. & Hashim, U. 2017. Characterization of zinc oxide (ZnO) piezoelectric properties for surface acoustic wave (SAW) device. International Conference on Applied Photonics and Electronics 2017 (InCAPE2017). Avillion Port Dickson, Malaysia. p. 01055.

Zhu, L. & Zeng, W. 2017. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical 267: 242-261.

 

*Pengarang untuk surat-menyurat; email: ari.sulistyo@lecturer.unri.ac.id

   

 

sebelumnya