Sains
Malaysiana 49(12)(2020): 2989-2996
http://dx.doi.org/10.17576/jsm-2020-4912-10
A Brief
Review on Smart Grid Residential Network Schemes
(Ulasan
Ringkas Skema Rangkaian Kediaman Grid Pintar)
NOSHIN
FATIMA1*, TAHSEEN AMIN QASURIA2 & MOHD. ADIB IBRAHIM1
1Solar Energy Research Institute, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Ghulam Ishaq Khan Institute of Engineering
Sciences and Technology, Topi-23640, KPK, Pakistan
Diserahkan:
11 Ogos 2020/Diterima: 19
Ogos 2020
ABSTRACT
Presently
the domestic zone is a fundamental part of the overall energy consumption
curve. Traditional energy control grids are facing dreadful complications while
handling domestic users due to the rapid growth in energy demand. However,
traditional grids are mainly dependent on coal, petrol, and other expensive
resources, although these resources are limited and also causing air pollution.
Hence, to avoid them, alternative resources should be considered for energy
production. Literature showed that renewable resources like wind, water,
thermal, and solar are some of the replacements for green energy production.
Their foremost advantage is that they are natural and free which will aid in
the production of economic and environmental-friendly energy on a large scale.
However, the residential-side consumers should also utilize the electricity
responsibly via the reduction in peak hour loads, by shifting loads to off-peak
hours. This will be possible through using different optimal consumption
schemes for demand-side management. In this article, home energy management
system schemes are discussed to reduce electricity bills for domestic consumers
by modifying the peak to average ratio. The suggested schemes can be used in
the future, where automatic machines will be able to communicate and make
intelligent decisions with the grid. The comparative study presents a summary
concerning their methods, load and cost minimization, scheduling, pricing, and
coverage range. As a result, customers can select the scheme according to their
requirements or can combine two or more to achieve a different kind of benefits
to utilizing energy both qualitatively and quantitatively.
Keywords:
Demand-side management; energy efficiency; renewable resources; smart
appliances; smart grid
ABSTRAK
Pada
masa ini zon domestik memainkan peranan penting dalam keluk penggunaan tenaga
secara keseluruhan. Grid kawalan tenaga tradisi menghadapi komplikasi mengerikan
semasa menangani pengguna domestik kerana pertumbuhan permintaan tenaga yang
pesat. Walau bagaimanapun, grid tradisi tersebut bergantung kepada arang batu,
petrol dan sumber lain yang mahal. Namun, sumber-sumber ini terhad dan juga
menyebabkan pencemaran udara. Oleh itu, untuk mengatasi masalah tersebut,
sumber alternatif harus dipertimbangkan untuk pengeluaran tenaga. Kajian
kepustakaan menunjukkan bahawa sumber tenaga yang boleh diperbaharui seperti
angin, air, haba dan solar adalah antara kaedah alternatif untuk penghasilan
tenaga. Kelebihan utama sumber tersebut adalah daripada sumber semula jadi dan
percuma yang akan membantu penjanaan tenaga yang mesra ekonomi dan mesra alam
secara besar-besaran. Namun begitu, dari segi penempatan, pengguna juga harus
menggunakan elektrik dengan penuh tanggung jawab melalui pengurangan beban pada
waktu puncak, dengan mengalihkan beban ke luar lingkungan waktu puncak yang
dapat dilakukan dengan mengamalkan skema penggunaan tenaga optimum yang
berbeza. Dalam kertas ini, skema sistem pengurusan tenaga rumah dibincangkan
untuk mengurangkan bil elektrik bagi pengguna domestik dengan mengubah nisbah
puncak ke purata. Skema yang disarankan dapat digunakan pada masa hadapan
dengan mesin akan berkomunikasi secara automatik dan membuat keputusan yang
bijak pada grid. Kajian perbandingan menunjukkan ringkasan mengenai kaedah,
pengurangan beban dan kos, penjadualan, penetapan harga serta liputan jaringan
mereka. Oleh itu, pelanggan boleh memilih skema mengikut keperluan masing-masing
atau dapat menggabungkan dua atau lebih skema untuk mencapai pelbagai jenis
faedah menggunakan tenaga dengan baik secara kualitatif dan kuantitatif.
Kata
kunci: Grid pintar; kecekapan tenaga; pengurusan daripada sisi permintaan; peranti
pintar; sumber yang boleh diperbaharui
RUJUKAN
Abdolrasol, M.G., Hannan, M.A., Mohamed, A., Amiruldin,
U.A.U., Abidin, I.B.Z. & Uddin, M.N. 2018. An optimal scheduling controller
for virtual power plant and microgrid integration using the binary backtracking
search algorithm. IEEE Transactions on Industry Applications 54(3):
2834-2844.
Ahmed, M.S., Mohamed, A., Khatib, T., Shareef, H., Homod,
R.Z. & Abd Ali, J. 2017. Real time optimal schedule controller for home
energy management system using new binary backtracking search algorithm. Energy
and Buildings 138(2017): 215-227.
Akestoridis, D.G., Harishankar, M., Weber, M. & Tague, P.
2020. Zigator: Analyzing the security of zigbee-enabled smart homes. In Proceedings
of the 13th ACM Conference on Security and Privacy in Wireless and Mobile
Networks ACM. pp. 77-88.
Alsharif, M.H., Nordin, R. & Ismail, M. 2016. Green
wireless network optimisation strategies within smart grid environments for
Long Term Evolution (LTE) cellular networks in Malaysia. Renewable
Energy 85: 157-170.
Bao, Z., Qiu, W., Wu, L., Zhai, F., Xu, W., Li, B. & Li,
Z. 2018. Optimal multi-timescale demand side scheduling considering dynamic
scenarios of electricity demand. IEEE Transactions on Smart Grid 10(3): 2428-2439.
Barbato, A. & Capone, A. 2014. Optimization models and
methods for demand-side management of residential users: A survey. Energies 7(9): 5787-5824.
Caron, S. & Kesidis, G. 2010. Incentive-based energy
consumption scheduling algorithms for the smart grid. In 2010 First IEEE
International Conference on Smart Grid Communications. pp. 391-396.
Costanzo, G.T., Zhu, G., Anjos, M.F. & Savard, G. 2012. A
system architecture for autonomous demand side load management in smart
buildings. IEEE Transactions on Smart Grid 3(4): 2157-2165.
Costanzo, G.T., Kheir, J. & Zhu, G. 2011. Peak-load
shaving in smart homes via online scheduling. 2011 IEEE International
Symposium on Industrial Electronics. pp. 1347-1352.
Fatima, N., Karimov, K.S., Qasuria, T.A. & Ibrahim, M.A.
2020. A novel and stable way for energy harvesting from Bi2Te3Se alloy based
semitransparent photo-thermoelectric module. Journal of Alloys and
Compounds 849: 156702.
Filho, G.P.R., Villas, L.A., Gonçalves, V.P., Pessin, G.,
Loureiro, A.A. & Ueyama, J. 2019. Energy-efficient smart home systems:
Infrastructure and decision-making process. Internet of Things 5:
153-167.
Ghadimi, N., Akbarimajd, A., Shayeghi, H. & Abedinia, O.
2018. A new prediction model based on multi-block forecast engine in smart
grid. Journal of Ambient Intelligence and Humanized Computing 9(6):
1873-1888.
Guha, D., Roy, P. & Banerjee, S. 2020. Quasi-oppositional
backtracking search algorithm to solve load frequency control problem of
interconnected power system. Iranian Journal of Science and Technology
Transactions of Electrical Engineering 44(2): 781-804.
Hajjawi, A. & Ismail, M. 2015. A scheduling algorithm
based self-learning technique for smart grid communications over 4G
networks. Journal of Communications 10(11): 876-881.
Hannan, M.A., Tan, S.Y., Al-Shetwi, A.Q., Jern, K.P. &
Begum, R.A. 2020. Optimized controller for renewable energy sources integration
into microgrid: Functions, constraints and suggestions. Journal of
Cleaner Production 256(2020): 120419.
Ibrahim, A.M., Attia, M.A. & Abdelaziz, A.Y. 2020. A DSM
approach for distribution systems with high wind power penetration. Electric
Power Components and Systems 2012: 1-14.
Jawad, H.M., Jawad, A.M., Nordin, R., Gharghan, S.K.,
Abdullah, N.F., Ismail, M. & Abu-AlShaeer, M.J. 2019. Accurate empirical
path-loss model based on particle swarm optimization for wireless sensor
networks in smart agriculture. IEEE Sensors Journal 20(1): 552-561.
Karimov, K.S., Fatima, N., Qasuria, T.A., Siddiqui, K.J.,
Bashir, M.M., Alharbi, H.F., Alharth, N.H., Al-Harthi, Y.S., Amin, N. &
Akhtaruzzaman, M. 2020. Innovative semitransparent photo-thermoelectric cells
based on bismuth antimony telluride alloy. Journal of Alloys and
Compounds 816(2020): 152593.
Lee, J., Kim, H.J., Park, G.L. & Kang, M. 2012. Energy
consumption scheduler for demand response systems in the smart grid. Journal
of Information Science & Engineering28(5):
955-969.
Lee, Z.Y. 2020. Game Theory based Autonomous DSM Algorithm
Design. EEE Student Reports (FYP/IA/PA/PI) Nanyang
Technological University (Unpublished).
Mahmood, A., Khan, I., Razzaq, S., Najam, Z., Khan, N.A.,
Rehman, M.A. & Javaid, N. 2014. Home appliances coordination scheme for
energy management (HACS4EM) using wireless sensor networks in smart
grids. Procedia Computer Science 32(2014): 469-476.
Mbungu, N.T., Bansal, R.C. & Naidoo, R.M. 2019. Smart
energy coordination of autonomous residential home. IET Smart Grid 2(3): 336-346.
Mohsenian-Rad, A.H., Wong, V.W., Jatskevich, J. &
Schober, R. 2010. Optimal and autonomous incentive-based energy consumption
scheduling algorithm for smart grid. Innovative Smart Grid Technologies
(ISGT) 2010: 1-6.
Pallonetto, F., De Rosa, M., Milano, F. & Finn, D.P.
2019. Demand response algorithms for smart-grid ready residential buildings
using machine learning models. Applied Energy 239: 1265-1282.
Ramos, J.S., Moreno, M.P., Rodríguez, L.R., Delgado, M.G.
& Domínguez, S.Á. 2019. Potential for exploiting the synergies between
buildings through DSM approaches. Case study: La Graciosa Island. Energy
Conversion and Management 194: 199-216.
Rayati, M., Bozorg, M., Ranjbar, A.M. & Cherkaoui, R.
2020. Balancing management of strategic aggregators using non-cooperative game
theory. Electric Power Systems Research 184(2020): 106297.
Ridzuan, N.H.A.M., Marwan, N.F., Khalid, N., Ali, M.H. &
Tseng, M.L. 2020. Effects of agriculture, renewable energy, and economic growth
on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources,
Conservation and Recycling 160(2020): 104879.
Ruiz, N., Cobelo, I. & Oyarzabal, J. 2009. A direct load control model for virtual power plant management. IEEE Transactions on Power Systems 24(2): 959-966.
Samadi, P., Mohsenian-Rad, H., Schober, R. & Wong, V.W. 2012. Advanced demand side management for the future smart grid using mechanism design. IEEE Transactions on Smart Grid 3(3): 1170-1180.
Shi, Y., Tuan, H.D., Savkin, A.V., Duong, T.Q. & Poor, H.V. 2018. Model predictive control for smart grids with multiple electric-vehicle charging stations. IEEE Transactions on Smart Grid 10(2): 2127-2136.
Wang, P. & Tu, G. 2020. Localization algorithm of wireless sensor network based on matrix reconstruction. Computer Communications 154: 216-222.
Wilkes, J., Moccia, J. & Drangan, M. 2012. Wind in power: 2011 European Wind Statistics, European Wind Energy Association Technical Report EWEA. pp. 1-11.
Wu, Q., Wang, P. & Goel, L. 2010. Direct load control (DLC) considering nodal interrupted energy assessment rate (NIEAR) in restructured power systems. IEEE Transactions on Power Systems 25(3): 1449-1456.
Xia, K., Ni, J., Ye, Y., Xu, P. & Wang, Y. 2020. A real-time monitoring system based on ZigBee and 4G communications for photovoltaic generation. CSEE Journal of Power and Energy Systems 6(1): 52-63.
Zhao, X., Guerrero, J.M., Savaghebi, M., Vasquez, J.C., Wu,
X. & Sun, K. 2016. Low-voltage ride-through operation of power converters
in grid-interactive microgrids by using negative-sequence droop control. IEEE
Transactions on Power Electronics 32(4): 3128-3142.
*Pengarang
untuk surat-menyurat; email: noshinfatima1990@gmail.com
|