Sains Malaysiana 49(12)(2020): 2963-2975

http://dx.doi.org/10.17576/jsm-2020-4912-08

 

Hubungan antara Cahaya Matahari dengan Penggunaan Sel Suria Generasi Ke-3 Menurut Al-Quran

(The Relationship between Sunlight and the Use of 3rd Generation Solar Cells According to the Qur’an)

 

MUHAMMAD HILMI JALIL1, SITI NUR FARHANA MOHD NASIR2, MOHAMMAD IKHWAN ISMAIL1, MOHD YUSOF HAJI OTHMAN1*& MOHD ASRI MAT TERIDI2

 

1Institute of Islamic Hadhari, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 7 Ogos 2020/Diterima:  19 Ogos 2020

 

ABSTRAK

Bahan api fosil yang lazim digunakan pada hari ini sebagai sumber tenaga memerlukan kos yang tinggi, mencemarkan alam sekitar dan akan habis pada masa akan datang. Salah satu sumber tenaga pilihan yang dapat menggantikan sumber tenaga fosil adalah tenaga yang dihasilkan oleh matahari. Justeru makalah ini membincangkan ilmu al-Qur’an yang berkaitan dengan tabii matahari, khususnya tentang sumber tenaga yang terhasil daripada kewujudan matahari. Makalah ini juga membincangkan integrasi antara ilmu al-Qur’an dengan sains dalam konteks penggunaan tenaga matahari. Perbincangan ini dikaitkan dengan penggunaan sel suria generasi ke-3 iaitu sel suria terpeka pewarna, sel suria organik dan sel suria perovskit. Kajian ini mendapati al-Quran menganjur manusia melakukan kajian tentang matahari, supaya manusia beroleh manfaat daripada matahari, dan dalam masa yang sama mengelak daripada mendapat kesan negatif daripada matahari. Antara manfaat matahari yang dinyatakan dalam al-Quran adalah penghasilan sumber tenaga yang boleh diperbaharui. Kegagalan manusia memahami tabii matahari dengan baik akan menyebabkan manusia ketinggalan dan gagal memanfaatkan nikmat Allah yang menciptakan matahari secara komprehensif.

 

Kata kunci: Al-Qur’an; matahari; sel suria organik (OSC); sel suria perovskit (PSC); sel suria terpeka pewarna (DSSC)

ABSTRACT

Fossil fuels commonly used today as a source of energy is costly, polluted the environment and will be depleted in the future. One of the preferred sources of energy that can replace fossil fuels is solar-generated energy. Thus, this paper discusses the knowledge of Qur'an related to sunlight, in particular the source of energy generated by the existence of the sun. This paper also discusses the integration of Qur’an and science in the context of solar energy generation. The discussion relates to the use of 3rd generation solar cells namely dye-sensitized solar cells, organic solar cells and perovskites solar cells. The study found that the Qur’an encourages people to study the sun, so that they can benefit from the sun, while at the same time avoiding the negative effects of the sun. One of the benefits of the sun mentioned in the Qur’an is the generation of renewable energy sources. Failure to understand the sun properly will cause humans fail to fully utilize the favour of God who created the sun in a comprehensive manner.

 

Keywords: Al-Qur’an; dye-sensitized solar cells (DSSCs), organic solar cells (OSCs), perovskite solar cells (PSCs); solar energy

 

RUJUKAN

Abdullah Basmeih. 2010. Tafsir Pimpinan ar-Rahman Kepada Pengertian al-Qur’an. Putrajaya: JAKIM.

Abdus Salam 1995. Islam and science-concordance or conflict? Review of Religions 81(8): 1-12.

Ahmad Sunari Long. 2009. Pengenalan metodologi penyelidikan pengajian islam. Bangi: Jabatan Usuluddin dan Falsafah, Fakulti Pengajian Islam, Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Al-Hassani, S.T. 2012. 1001 Inventions: The Enduring Legacy of Muslim Civilization. Washington: National Geographic Society. hlm. 156-203.

Alias, N.N. & Yaacob, K.A. 2016. Natural dye sensitizer in dye sensitized solar cell. Sains Malaysiana 45(8): 1227-1234.

al-Khin, M., al-Bugha, M. & al-Sharbaji, A. 1992. Al-fiqh al-manhaji ala madhhab al-Imam al-Shafie. Dimashq: Dar al-Qalam.

al-Qaradawi Yusuf. 1979. Al-Iman wa al-Hayat. Beirut: Muassasah al-Risalah.

Ballazi, N.J. 2013. Penentuan tarikh-tarikh penting dalam sirah Rasulullah SAW berdasarkan pengiraan takwim Hijri terkini. Universiti Malaya. Tesis Dr. Fal. (Tidak diterbitkan).

Buscaino, R., Baiocchi, C., Barolo, C., Medana, C., Grätzel, M., Nazeeruddin, M.K. & Viscardi, G. 2008. A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorganica Chimica Acta 361(3): 798-805.

Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N. & Han, L. 2006. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45(25): 638-640.

el-Gomati, M. 2017. Ibn al-haytham and the international year of light his legacy. Dlm Light-Based Science: Technology and Sustainable Development, The Legacy of Ibn al-Haytham, disunting oleh Boudrioua, A., Rashed, R. & Lakshminarayanan, V. Florida: CRC Press. hlm. 148-162.

Grätzel, M. 2003. Dye-sensitised solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2): 145-153.

Günes, S., Neugebauer, H. & Sariciftci, N.S. 2007. Conjugated polymer-based organic solar cells. Chemical Reviews 107(4): 1324-1338.

Hodgson, L. 2005. Making the Most of Shade: How to Plan, Plant, and Grow a Fabulous Garden that Lightens Up the Shadows. Pennsylvania: Rodale. hlm. 89-114.

Kopal, Z. 1996. An Introduction to the Study of the Moon. Netherlands: Springer. hlm. 321-434.

Leon, L.R. & Bouchama, A. 2015. Heat stroke. Comprehensive Physiology 5(2): 611-647.

Lübken, F.J., Berger, U., Kiliani, J., Baumgarten, G. & Fiedler, J. 2012. Variabality and trend effects in mesospheric ice layer. Dlm Climate and Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program, disunting oleh Lübken, F. Heidelberg: Springer Science & Business Media. hlm. 317-338.

Magiels, G. 2010. From Sunlight to Insight: Jan Ingenhousz, the Discovery of Photosynthesis & Science in the Light of Ecology. Brussels: VUBPRESS Brussels University Press. hlm. 357-366.

Mamat, S., Faizzi, M., Su’ait, M.S., Ludin, N.A., Sopian, K., Dzulkurnain, N.A., Ahmad, A., Shyuan, L.K., Khnoon, L.T. & Brandell, D. 2018. Kajian elektrolit polimer berasaskan getah asli terubah suai (MG49) dalam sel suria terpeka pewarna. Sains Malaysiana 47(11): 2667-2676.

Medawar, P.B. 1987. The Limits of Science. Oxford: Oxford University Press. hlm. 84-146.

Mende, K., Mende, K. + Lighting Planners Associates (Firm), Lighting Planners Associates Inc. 2000. Designing with Light and Shadow. Victoria: Images Publishing. hlm. 10-14.

Mikhnenko, O.V., Blom, P.W. & Nguyen, T.Q. 2015. Exciton diffusion in organic semiconductors. Energy & Environmental Science 8(7): 1867-1888.

Mohd Shahwahid, H.O. & Jamal Othman 2006. Malaysia. Dlm. Indonesia's Fires and Haze: The Cost of Catastrophe, disunting oleh Glover, D. & Jessup, T. Singapore: Institute of Southeast Asian Studies. hlm. 22-50.

Mohd. Yusof Haji Othman & Kamaruzzaman Sopian. 2002. Teknologi Tenaga Suria. Bangi: Penerbit Universiti Kebangsaan Malaysia.

NewPath Learning (NPL). 2014. The Sun-Earth-Moon System Science Learning Guide. New York: NewPath Learning. hlm. 2-17.

Nordgren, T. 2016. Sun Moon Earth: The History of Solar Eclipses from Omens of Doom to Einstein and Exoplanets. Basic Books. hlm. 112-147.

Radoine, H. 2017. Architecture in Context: Designing in the Middle East. West Sussex: John Wiley & Sons. hlm. 1-52.

Rand, C. 2012. Time. London: Raintree. hlm. 12-17.

Saunders, N. & Chapman, S. 2004. Renewable Energy. Oxford: Raintree. hlm. 29-35.

Soon, W.W.H. & Yaskell, S.H. 2003. The Maunder Minimum and the Variable Sun-Earth Connection. Singapore: World Scientific Publishing Co. Pte. Ltd. hlm. 85-96.

Wang, Q.F., Wu, J.J., Geng, G.P., Zhou, H.K. & Mo, X.Y. 2015. Variability and patterns of drought characteristics based on SPEI in the Huang-Huai-Hai plain between 1981 and 2010. Dlm. Research and Science-Policy Interfacing, disunting oleh Andreu, J., Abel Solera, Paredes-Arquiola, J., Haro-Monteagudo, D. & Drought, H.V.L Leiden: CRC Press. hlm. 187-192.

Xie, J., Liu, F. & Yan, K. 2019. Perovskite solar cells processed by solution nanotechnology. Dlm. Advanced Nanomaterials for Solar Cells and Light Emitting Diodes, disunting oleh Gao, F. Netherland: Elsevier. hlm. 119-174.

Yun, T.W. & Sulaiman, K. 2011. Fabrication and morphological characterization of hybrid polymeric solar cells based on P3HT and inorganic nanocrystal blends. Sains Malaysiana 40(1): 43-47.

Zain, S.M. 2000. Pengenalan Sejarah dan Falsafah Sains. Bangi: Penerbit Universiti Kebangsaan Malaysia.

Zand, J., Spreen, A.N. & LaValle, J.B., 1999. Smart Medicine for Healthier Living. New York: Avery Publishing Group. hlm. 544-545.

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z., You, J., Liu, Y. & Yang, Y. 2014. Interface engineering of highly efficient perovskite solar cells. Science 345(6196): 542-546.

 

*Pengarang untuk surat menyurat; email: myho@ukm.edu.my

   

 

sebelumnya