Sains Malaysiana 49(12)(2020): 2913-2925
http://dx.doi.org/10.17576/jsm-2020-4912-04
Rapid ESKAPE Pathogens Detection Method using
Tapered Dielectrophoresis Electrodes via Crossover
Frequency Analysis
(Kaedah Pengesanan Pantas Patogen ESKAPE menggunakan Elektrod Dielektroforesis Tirus melalui Analisis Frekuensi Pindah Silang)
MUHAMMAD KHAIRULANWAR ABDUL RAHIM1*, NUR MAS AYU JAMALUDIN1,
JACINTA SANTHANAM2, AZRUL AZLAN HAMZAH1 & MUHAMAD
RAMDZAN BUYONG1
1Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory,
Malaysia
Diserahkan: 2 Jun 2020/Diterima: 15 Julai 2020
ABSTRACT
This paper
introduces the versatile of an electrokinetic technique by using the
non-uniform electric field for dielectrophoresis (DEP) application. This
technique is defined as electromicrofluidics. The potential application for
portable and real time detection method of Enterococcus faecium (EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter baumannii
(AB), Pseudomonas aeruginosa (PA) and Enterobacter aerogenes (EA), which are
the (ESKAPE) bacteria. The MATLAB analytical modelling was used in simulating
the polarisation factor and velocities of bacteria based on Clausius-Mossotti
factor (CMF). The validation of CMF simulation through the DEP experimental can
be quantified based on the response of alternating current (AC) voltage applied
using 6 voltage peak to peak (Vp-p) to their input frequencies from
100 to 15000 kHz. The droplet method was deployed to place properly 0.2 μL
of sample onto DEP microelectrode. The velocities and crossover frequency (fxo)
ranges of bacteria were determined through bacteria trajectory in specific time
interval monitored by microscope attached with eyepiece camera. The applied
range of input frequencies from 100 to 15000 kHz at 6 Vp-p for each bacteria were successfully identified the unique
ranges of frequencies response for detection application. The advantages of
this works are selective with rapid capability for multidrug resistant (MDR)
bacteria detection application.
Keywords: Crossover frequency (fxo); dielectrophoresis; ESKAPE bacteria
ABSTRAK
Makalah ini memperkenalkan satu teknik elektrokinetik yang menggunakan
medan elektrik secara tidak seragam iaitu dielektroforesis (DEP). Teknik ini ditakrifkan sebagai elektromikrofluidik. Berpotensi
bagi aplikasi secara mudah alih dan pada masa nyata untuk pengesanan Enterococcus faecium
(EF), Staphylococcus aureus (SA), Klebsiella pneumoniae (KP), Acinetobacter
baumannii (AB), Pseudomonas aeruginosa (PA) dan Enterobacter aerogenes
(EA) yang merupakan bakteria (ESKAPE). Pemodelan analitik MATLAB digunakan
dalam mensimulasi faktor polarisasi dan halaju bakteria berdasarkan faktor
Clasius-Mossotti (CMF). Pengesahan simulasi CMF melalui uji kaji DEP dapat
dihitung berdasarkan tindak balas voltan arus ulang alik (AC) yang menggunakan
6 volt puncak ke puncak (Vp-p) terhadap frekuensi inputnya dari 100 sehingga
15000 kHz. Kaedah titisan digunakan untuk menempatkan 0.2 μL sampel ke
atas permukaan mikroelektrod DEP dengan tepat. Julat halaju dan frekuensi
pindah silang (fxo) bakteria ditentukan melalui lintasan bakteria
dalam selang waktu tertentu yang dipantau oleh mikroskop yang diintegrasikan
bersama kamera. Julat frekuensi input yang dikenakan terhadap ESKAPE bakteria
dari 100 hingga 15000 kHz pada 6 Vp-p untuk setiap bakteria berjaya dikenal
pasti julat frekuensi pindah silang uniknya sebagai pengesanan. Hasil analisis,
kelebihan penyelidikan ini adalah kebolehan secara selektif dengan kemampuan
pantas untuk aplikasi pengesanan bakteria yang rentan kepada antibiotik (MDR),
ESKAPE. Ini membolehkan aplikasi pengesan bakteria ini dilakukan secara tepat
dengan menggunakan teknik yang mudah pada masa hadapan.
Kata kunci: Dielektroforesis; ESKAPE bacteria; frekuensi pindah silang (fxo)
RUJUKAN
Abd Samad, M.I., Buyong,
M.R., Kim, S.S. & Majlis, B.Y. 2019. Dielectrophoresis velocities response on tapered electrode
profile: Simulation and experimental. Microelectronics
International 36: 45-53.
Adekanmbi, E.O. & Srivastava, S.K.
2019. Applications of electrokinetics and dielectrophoresis on designing chip-based disease
diagnostic platforms. In Bio-Inspired
Technology. https://www.intechopen.com/books/bio-inspired-technology/applications-of-electrokinetics-and-dielectrophoresis-on-designing-chip-based-disease-diagnostic-pla. DOI:
10.5772/intechopen.82637.
Almasaudi, S.B. 2018. Acinetobacter spp. as nosocomial pathogens:
Epidemiology and resistance features. Saudi
Journal of Biological Sciences 25(3): 586-596.
Brooks, L.E., Ul-Hasan, S., Chan, B.K. & Sistrom,
M.J. 2018. Quantifying the evolutionary conservation of genes encoding
multidrug efflux pumps in the ESKAPE pathogens to identify antimicrobial drug
targets. Msystems 3(3): 1-9.
Buyong, M.R., Kayani,
A.A., Hamzah, A.A. & Majlis,
B.Y. 2019. Dielectrophoresis manipulation: Versatile
lateral and vertical mechanisms. Biosensors 9(30): 1-26.
Buyong, M.R., Larki, F., Faiz, M.S., Hamzah, A.A., Yunas, J. & Majlis, B.Y. 2015. Tapered aluminium microelectrode array for improvement of dielectrophoresis-based
particle manipulation. Sensors 15(5):
10973-10990.
Cha, S.H., Kang, S.H., Lee, Y.J., Kim, J.H., Ahn,
E.Y., Park, Y. & Cho, S. 2019. Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold
nanoparticles on mica substrate. Scientific
Reports 9(1): 1-12.
D'Amico, L., Ajami, N.J., Adachi, J.A., Gascoyne,
P.R. & Petrosino, J.F. 2017. Isolation and
concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab on a Chip 17(7): 1340-1348.
De Angelis,
G., Posteraro, B., De Carolis,
E., Menchinelli, G., Franceschi,
F., Tumbarello, M., De Pascale, G., Spanu, T. & Sanguinetti, M. 2018. T2 Bacteria magnetic
resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. Journal of Antimicrobial
Chemotherapy 73(suppl_4): iv20-iv26.
Diene, S.M., Merhej,
V., Henry, M., El Filali, A., Roux, V., Robert, C., Azza, S., Gavory, F., Barbe, V., La Scola, B. & Raoult,
D. 2013. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new ‘killer bugs’ are
created because of a sympatric lifestyle. Molecular Biology and
Evolution 30(2): 369-383.
Du, E. & Manoochehri, S. 2008. Electrohydrodynamic‐mediated dielectrophoretic separation and transport based on asymmetric electrode pairs. Electrophoresis 29(24): 5017-5025.
Gascoyne, P.R., Shim, S., Noshari, J., Becker,
F.F. & Stemke, H.K. 2013. Correlations between
the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field‐flow fractionation. Electrophoresis 34(7): 1042-1050.
Gnanamani, A., Hariharan, P. & Paul-Satyaseela,
M. 2017. Staphylococcus aureus: Overview of bacteriology, clinical
diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus 2017:
4-28.
González-Bello. C. 2017. Antibiotic adjuvants - a strategy to unlock
bacterial resistance to antibiotics. Bioorganic
& Medicinal Chemistry Letters 27(18): 4221-4228.
Honegger, T. & Peyrade, D. 2013.
Comprehensive analysis of alternating current electrokinetics induced motion of colloidal particles in a three-dimensional microfluidic chip. Journal of Applied Physics 113(19):
194702.
Jamaludin, N.M.A., Buyong, M.R., Rahim, M.K., Hamzah,
A.A., Mailis, B.Y. & Bais,
B. 2018. Dielectrophoresis: Characterization of
triple-negative breast cancer using Clausius-Mossotti factor. In 2018 IEEE International Conference on
Semiconductor Electronics (ICSE) IEEE. pp. 85-88.
Karlowsky, J.A., Hoban, D.J., Hackel, M.A., Lob, S.H. & Sahm,
D.F. 2017. Antimicrobial susceptibility of gram-negative ESKAPE pathogens
isolated from hospitalized patients with intra-abdominal and urinary tract
infections in Asia-Pacific countries: SMART 2013-2015. Journal of Medical Microbiology 66(1): 61-69.
Kikkeri, K., Breazeal, M.V.R., Ren, X., Pruden, A. & Agah, M. 2018. A
monolithic dielectrophoresis chip with impedimetric sensing for assessment of pathogen
viability. Journal of Microelectromechanical Systems 27(5):
810-817.
Lalam, C., Tantravahi, S. & Petla, N.
2015. Identification and characterization of Enterococcus feacium (MCC-2729) with antimicrobial and abiotic
stress tolerance properties. International
Journal of Current Microbiology and Applied Science 4(8): 309-322.
Leung, L.M., Fondrie, W.E., Doi,
Y., Johnson, J.K., Strickland, D.K., Ernst, R.K. & Goodlett,
D.R. 2017. Identification of the ESKAPE pathogens by mass spectrometric
analysis of microbial membrane glycolipids. Scientific
Reports 7(1): 1-10.
Mohammad, K., Buchanan, D.A., Braasch, K., Butler,
M. & Thomson, D.J. 2017. CMOS single cell dielectrophoresis cytometer. Sensors and Actuators B: Chemical 249(2012): 246-255.
Pethig, R.R. 2017. Dielectrophoresis: Theory,
Methodology and Biological Applications. 1st ed. London,
Ontario: John Wiley & Sons. Inc. pp. 253-254.
Pethig, R. 2013. Dielectrophoresis: An assessment of
its potential to aid the research and practice of drug discovery and delivery. Advanced Drug Delivery Reviews 65(11-12): 1589-1599.
Phoon, H.Y., Hussin,
H., Hussain, B.M., Lim, S.Y., Woon, J.J., Er, Y.X. & Thong, K.L. 2018. Distribution, genetic
diversity and antimicrobial resistance of clinically important bacteria from
the environment of a tertiary hospital in Malaysia. Journal of Global Antimicrobial Resistance 14(2018): 132-140.
Rani, F.M., Rahman, N.I.A., Ismail, S., Alattraqchi,
A.G., Cleary, D.W., Clarke, S.C. & Yeo, C.C. 2017. Acinobacter spp. infections in
Malaysia: A review of antimicrobial resistance trends, mechanisms and
epidemiology. Frontiers in Microbiology 8(2017): 1-13.
Rahim, M.K.A., Buyong, M.R., Jamaludin,
N.M.A., Hamzah, A.A., Siow,
K.S. & Majlis, B.Y. 2018. Characterization of
permittivity and conductivity for ESKAPE pathogens detection. IEEE
International Conference on Semiconductor Electronics (ICSE). pp. 132-135.
Rajeshwari, H., Nagveni, S., Oli, A., Parashar, D. & Chandrakanth,
K.R. 2009. Morphological changes of Klebsiellapneumoniae in response to cefotaxime: A scanning electron
microscope study. World Journal of
Microbiology and Biotechnology 25(2009): 2263-2266.
Renner, L.D., Zan, J., Hu, L.I., Martinez, M.,
Resto, P.J., Siegel, A.C., Torres, C., Hall, S.B., Slezak,
T.R., Nguyen, T.H. & Weibel, D.B. 2017. Detection
of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based
assays in a portable degas-actuated microfluidic diagnostic assay
platform. Applied and Environmental Microbiology 83(4): e02449.
Sadeghian, H., Hojjat, Y. & Soleimani,
M. 2017. Interdigitated electrode design and optimization for dielectrophoresis cell separation actuators. Journal of Electrostatics 86: 41-49.
Santajit, S. & Indrawattana,
N. 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International 2016: 2475067.
Shirmohammadli, V. & Manavizadeh,
N. 2018. Numerical modeling of cell trajectory inside a dielectrophoresis microdevice designed for breast cancer cell
screening. IEEE Sensors Journal 18(20):
8215-8222.
Siebman,
C., Velev, O. & Slaveykova,
V. 2018. Probing contaminant-induced alterations in chlorophyll fluorescence by
AC-dielectrophoresis-based 2D-algal array. Biosensors 8(1): 2-8.
Vater, S.M., Weiße, S., Maleschlijski,
S., Lotz, C., Koschitzki,
F., Schwartz, T., Obst, U. & Rosenhahn,
A. 2014. Swimming behavior of Pseudomonas aeruginosa studied by holographic
3D tracking. PloS ONE 9(1):
e87765.
Xu, S., Wang, Q., Zhang, Q., Zhang, L., Zuo, L.,
Jiang, J.D. & Hu, H.Y. 2017. Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chemical Communications 53(81): 11177-11180.
Yunus, F.W., Buyong,
M.R., Yunas, J., Majlis,
B.Y. & Hamzah, A.A. 2019. 3-dimensional electric
field distributions of castellated and straight dielectrophoresis electrodes for cell separation. Sains Malaysiana48(6): 1239-1249.
Yunus, F.W., Hamzah,
A.A., Norzin, M.S., Buyong,
M.R., Yunas, J. & Majlis,
B.Y. 2018. Dielectrophoresis: Iron deficient anemic
red blood cells for artificial kidney purposes. IEEE
International Conference on Semiconductor Electronics (ICSE). pp. 5-8.
*Pengarang untuk surat-menyurat; email: muhdramdzan@ukm.edu.my
|