Sains Malaysiana 48(8)(2019): 1643–1654

http://dx.doi.org/10.17576/jsm-2019-4808-10

 

Amino Acid, Mineral, and Degree of Hydrolysis of Vinegar-Egg and Its Lipid Lowering and Antioxidant Effects in vitro and in vivo

(Asid Amino, Mineral dan Tahap Hidrolisis Cuka Telur serta Kesan Penurunan Lipid

dan Antioksidannya secara in vitro dan in vivo)

 

YUE ZHENG1,2, KUN LIU1,2, WANGHUI YAN1,2, GUOHUA WEI1,2, XINYU CHAO1,2, XIANG YAN1,2 & QINGMEI ZENG1,2*

 

1School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China

 

2Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China

 

Diserahkan: 4 Disember 2018/Diterima: 23 Mei 2019

 

ABSTRACT

Vinegar-egg, a product derived from vinegar and eggs, is a healthy beverage that has been popular in China for a long time. It contains abundant essential and hydrophobic amino acids, and minerals especially Ca and Mg via chemical analyses. The results showed changes of degree of hydrolysis (DH) by different soaking time. In vitro, vinegar-egg showed higher bile acid binding capacity and exhibited inhibition percentages of cholesterol micellar solubility. The DPPH radical-scavenging activity and lipid peroxidation inhibitory activity of vinegar-egg were evaluated, respectively. Additionally, after a 11-week experiment in vivo, high-fat diet (HFD) fed mice had higher weight gains, adipose tissue (EAT and SAT) and serum/liver lipids than the standard chow diet (SCD) fed ones, but vinegar-egg supplementation decreased (p < 0.05) them which may resulted in hyperlipidemia. Serum alanine aminotransferase (ALT) value and aspartate aminotransferase (AST) value in HFD-fed mice were reduced (p < 0.05) by supplementing vinegar-egg due to decreased (p < 0.05) malonaldehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GPH-Px) activities. Compared with those fed the SCD, HFD induced extensive intrahepatic lipid droplets and hepatic necrosis. However, supplementing the HFD with vinegar-egg attenuated these anomalies in a dose-dependent manner. Taken together, the component profiles of vinegar-egg contributed the lipid lowering and antioxidant effects on HFD-fed mice. Hence, vinegar-egg is expected to be a useful ingredient in physiologically functional foods for the treatment of hyperlipidemia.

 

Keywords: Antioxidant capacity; high-fat diet fed mice; hyperlipidemia; lipid-lowering effect; vinegar-egg

 

ABSTRAK

Cuka telur, produk yang diperoleh daripada cuka dan telur adalah minuman kesihatan yang popular di China sejak dulu. Ia mengandungi banyak asid amino yang penting dan hidrofobik, serta mineral seperti Ca dan Mg melalui analisis kimia. Keputusan menunjukkan tahap perubahan hidrolisis (DH) mengikut masa rendaman berbeza. Melalui in vitro, cuka telur menunjukkan kemampuan pengikat asid hempedu lebih tinggi dan mempamerkan peratusan perencatan keterlarutan misel kolesterol. Aktiviti radikal-skaveng DPPH dan aktiviti perencatan lipid pemperoksidaan cuka-telur telah dinilai. Selain itu, selepas uji kaji selama 11 minggusecara in vivo, tikus yang diberi makan diet tinggi lemak (HFD) menunjukkan peningkatan berat badan yang lebih tinggi, tisu adipos (EAT dan SAT) dan lipid serum/hati daripada yang diberi makan diet chow standard (SCD), tetapi penambahan cuka-telur menurun (p) < 0.05) ia dan boleh mengakibatkan hiperlipidemia. Nilai serum alanine aminotransferase (ALT) dan nilai aminotransferase (AST) aspartate pada tikus yang diberi HFD telah berkurang (p < 0.05) dengan penambahan cuka-telur disebabkan penurunan (p < 0.05) tahap malonaldehid (MDA), meningkatkan aktiviti peroksidase dismutase (SOD) dan glutation superoksida (SOD). Berbanding dengan yang diberi makan SCD, HFD mengaruh titisan lipid menyeluruh intrahepar dan nekrosis hepatik. Walau bagaimanapun, penambahan HFD dengan cuka-telur dapat mengurangkan anomali ini dengan cara kebergantungan-dos. Bersama, profil komponen cuka-telur menyumbang kepada pengurangan lipid dan kesan antioksidan ke atas tikus diberi HFD. Oleh yang demikian, cuka-telur dijangka akan menjadi bahan yang berguna dalam makanan berfungsi fisiologi untuk merawat hiperlipidemia.

 

Kata kunci: Cuka-telur; hiperlipidemia; kemampuan antioksidan; kesan pengurangan lipid; tikus berdiet tinggi lemak

RUJUKAN

Alsheikh-Ali, A.A., Kuvin, J.T. & Karas, R.H. 2004. Risk of adverse events with fibrates. American Journal of Cardiology 94: 935-938.

Alhaj, O.A., Kanekanian, A.D., Peters, A.C. & Tatham, A.S. 2010. Hypocholesterolaemic effect of Bifidobacterium animalis subsp. lactis(Bb12) and trypsin casein hydrolysate. Food Chemistry 123(2): 430-435.

Betts, M.J. & Russell, R.B. 2007. Amino acid properties and consequences of substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data. 2nd ed. edited by Barnes, M.R. New York: Wiley. pp. 289-316.

Bhat, Z.F., Sunil, K. & Bhat, H.F. 2015. Bioactive peptides of animal origin: A review. Journal of Food Science and Technology-Mysore 52: 5377-5392.

Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P.V., Uday, K.P., Chetan, N. & Dinesh, K.B. 2014. Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg in BALB/c mice. Food Research International 62: 1054-1061.

Chalamaiah, M., Yu, W.L. & Wu, J.P. 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry 245: 205-222.

Chen, J., Wu, Y., Yang, C.M., Xu, X.J. & Meng, Y.C. 2017. Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204. Food & Function 8: 4414-4420.

Chen, J.J., Mao, D., Yong, Y.Y., Li, J.L., Wei, H. & Lu, L. 2012. Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotuseryngii. Food Chemistry 130(3): 687-694.

Francisco, H.C., Jorge, C.R.R., David, B.A. & Maira, R.S.C. 2016. Potential therapeutic applications of Mucuna prurienspeptide fractions purified by high-performance liquid chromatography as angiotensin-converting enzyme inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal of Medicinal Food 19(2): 187-195.

Gu, F., Jinmoon, K., Khizar, H., Xia, S., Feng, B. & Zhang, X. 2009. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein-glucose model system. Food Chemistry 117(1): 48-54.

Howard, A. & Udenigwe, C.C. 2013. Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food & Function 4: 40-51.

Hogan, S., Zhang, L., Li, J., Wang, H. & Zhou, K. 2009. Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef [J]. Food Chemistry 117(3): 438-443.

Huang, Y.L., Chow, C.J. & Tsai, Y.H. 2012. Composition, characteristics, and in vitro physiological effect of the watersoluble polysaccharides from Cassia seed. Food Chemistry 134: 1967-1972.

Iranzo, O. 2011. Manganese complexes displaying superoxide dismutase activity: A balance between different factors. Bioorganic Chemistry 39(2): 73-87.

Kobayashi, H., Hirabayashi, Y., Murakami, H. & Ueda, T. 2009. Anti-obesity effects of amino acid in high-fat diet induced obese mice. FASEB J 23: 227.

Lee, H.S., Lee, Y.J., Chung, Y.H., Nam, Y., Kim, S.T., Park, E.S., Hong, S.M. & Yang, Y.K. 2015. Beneficial effects of red yeast rice on high-fat diet-induced obesity, hyperlipidemia, and fatty liver in mice. Journal of Medicinal Food 18: 1095-1102.

Lin, Y.H., Tsai, J.S. & Chen, G.W. 2017. Purification and identification of hypocholesterolemic peptides from freshwater clam hydrolysate with in vitro gastrointestinal digestion. Journal of Food Biochemistry 41(3): 1-8.

Liu, K.L., Zhao, Y., Chen, F.S. & Fang, Y. 2015. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chemistry 187: 424-430.

Lu, C.H., Liao, W.L., Wang, T.Y., Chen, C.C., Chen, Y.H., Tse, S.S., Huang, Y.C. & Tsai, F.J. 2014. Association of adenosine triphosphate-binding cassette transporter A1 gene polymorphism with lipid profiles and early-onset Type 2 diabetes. Science Asia 40: 212-218.

Maseko, T., Howell, K., Dunshea, F.R. & Ng, K. 2014. Selenium-enriched Agaricus bisporusincreases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chemistry 146: 327-333.

Moayedi, A., Mora, L., Aristoy, M.C., Safari, M., Hashemie, M. & Toldrá, F. 2018. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chemistry 250: 180-187.

Navab, M., Anantharamaiah, G.M., Reddy, S.T., Van Lenten, B.J., Wagner, A.C., Hama, S., Hough, G. & Bachini, E. 2005. An oral apoJ peptide renders HDL anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arteriosclerosis Thrombosis and Vascular Biology 25: 1932-1937.

Nielsen, P.M., Petersen, D., Dambmann, C., Nielsen, P.M., Petersen, D. & Dambmann, C. 2010. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 66(5): 642-646.

Padmavathi, R., Senthilnathan, P., Chodon, D. & Sakthisekaran, D. 2006. Therapeutic effect of paclitaxel and propolis on lipid peroxidation and antioxidant system in 7,12 dimethyl benz(a) anthracene-induced breast cancer in female Sprague Dawley rats. Life Sciences 78: 2820-2825.

Pan, X., Zhao, Y.Q., Hu, F.Y. & Wang, B. 2016. Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods 25: 220-230.

Qian, Z.J., Jung, W.K., Byun, H.G. & Kim, S.K. 2008. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigasagainst free radical induced DNA damage. Bioresource Technology 99: 3365-3371.

Ren, J.Y., Zhao, M.M., Shi, J., Wang, J.S., Jiang, Y.M., Cui, C., Kakuda, Y. & Xue, J.S. 2008. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization- mass spectrometry. Food Chemistry 108(2): 727-736.

Shazly, A.B., He, Z.Y., El-Aziz, M.A., Zeng, M.M., Zhang, S., Qin, F. & Chen, J. 2017. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chemistry 232: 753-762.

Uchida, K. & Kawakishi, S. 1992. Sequence-dependent reactivity of histidine containing peptides with copper (II)/ascorbate. Journal of Agricultural and Food Chemistry 40: 13-16.

Vaskonen, T. 2003. Dietary minerals and modification of cardiovascular risk factors. Journal of Nutritional Biochemistry 14: 492-506.

Wang, B.K., Liu, W.B., Chao, X. & Li, X.F. 2017. Dietary carbohydrate levels and lipid sources modulate the growth performance, fatty acid profiles and intermediary metabolism of blunt snout bream Megalobrama amblycephalain an interactive pattern. Aquaculture 481: 140-153.

Wang, S.Y., Chang, C.Y. & Chen, C.W. 2017. Effects of vinegar-egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity. Journal of Food and Drug Analysis 26(2): 731-740.

Xie, W.D., Zhao, Y.N. & Du, L.J. 2012. Emerging approaches of traditional Chinese medicine formulas for the treatment of hyperlipidemia. Journal of Ethnopharmacology 140: 345-367.

Zhong, F., Zhang, X., Ma, J. & Shoemaker, C.F. 2007. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates. Food Research International 40: 756-762.

Zhu, Z., Lin, Z., Jiang, H., Jiang, Y., Zhao, M. & Liu, X. 2017. Hypolipidemic effect of Youcha in hyperlipidemia rats induced by high-fat diet. Food & Function 8: 1680-1687.

 

*Pengarang untuk surat-menyurat; email: zengqingmei-1@163.com

 

 

 

 

sebelumnya