Sains Malaysiana 48(8)(2019):
1643–1654
http://dx.doi.org/10.17576/jsm-2019-4808-10
Amino Acid, Mineral, and
Degree of Hydrolysis of Vinegar-Egg and Its Lipid Lowering and Antioxidant
Effects in vitro and in vivo
(Asid Amino, Mineral dan Tahap Hidrolisis Cuka Telur serta Kesan Penurunan Lipid
dan Antioksidannya secara in vitro dan in vivo)
YUE ZHENG1,2, KUN LIU1,2, WANGHUI YAN1,2, GUOHUA WEI1,2, XINYU CHAO1,2, XIANG YAN1,2 & QINGMEI ZENG1,2*
1School
of Food and Biological Engineering, Hefei University of Technology, Hefei
230009, Anhui, China
2Engineering
Research Center of Bio-Process, Ministry of Education, Hefei University of
Technology, Hefei 230009, Anhui, China
Diserahkan: 4 Disember 2018/Diterima: 23 Mei
2019
ABSTRACT
Vinegar-egg, a product
derived from vinegar and eggs, is a healthy beverage that has been popular in
China for a long time. It contains abundant essential and hydrophobic amino
acids, and minerals especially Ca and Mg via chemical analyses. The results
showed changes of degree of hydrolysis (DH) by different soaking time. In vitro, vinegar-egg showed higher bile acid binding capacity
and exhibited inhibition percentages of cholesterol micellar solubility. The DPPH radical-scavenging activity and lipid peroxidation inhibitory
activity of vinegar-egg were evaluated, respectively. Additionally, after a
11-week experiment in vivo, high-fat diet (HFD)
fed mice had higher weight gains, adipose tissue (EAT and SAT)
and serum/liver lipids than the standard chow diet (SCD)
fed ones, but vinegar-egg supplementation decreased (p < 0.05) them which
may resulted in hyperlipidemia. Serum alanine aminotransferase (ALT)
value and aspartate aminotransferase (AST) value in HFD-fed
mice were reduced (p < 0.05) by supplementing vinegar-egg due to decreased
(p < 0.05) malonaldehyde (MDA)
levels, increased superoxide dismutase (SOD) and glutathione peroxidase
(GPH-Px) activities. Compared with those fed the SCD, HFD induced
extensive intrahepatic lipid droplets and hepatic necrosis. However, supplementing
the HFD with vinegar-egg attenuated these anomalies in a
dose-dependent manner. Taken together, the component profiles of vinegar-egg
contributed the lipid lowering and antioxidant effects on HFD-fed
mice. Hence, vinegar-egg is expected to be a useful ingredient in
physiologically functional foods for the treatment of hyperlipidemia.
Keywords: Antioxidant
capacity; high-fat diet fed mice; hyperlipidemia; lipid-lowering effect;
vinegar-egg
ABSTRAK
Cuka telur, produk yang diperoleh daripada cuka dan telur
adalah minuman
kesihatan yang popular di China sejak
dulu. Ia
mengandungi banyak asid amino yang penting dan hidrofobik, serta mineral seperti Ca dan Mg melalui analisis kimia. Keputusan menunjukkan tahap perubahan hidrolisis (DH) mengikut
masa rendaman berbeza. Melalui in vitro, cuka telur menunjukkan kemampuan pengikat asid hempedu
lebih tinggi
dan mempamerkan peratusan perencatan keterlarutan misel kolesterol. Aktiviti radikal-skaveng DPPH dan
aktiviti perencatan
lipid pemperoksidaan cuka-telur telah dinilai. Selain itu, selepas
uji kaji
selama 11 minggusecara in vivo, tikus
yang diberi makan
diet tinggi lemak (HFD)
menunjukkan peningkatan berat badan yang lebih tinggi, tisu
adipos (EAT dan
SAT)
dan lipid serum/hati
daripada yang diberi makan diet chow standard (SCD),
tetapi penambahan
cuka-telur menurun (p) <
0.05) ia dan
boleh mengakibatkan
hiperlipidemia. Nilai
serum alanine aminotransferase (ALT)
dan nilai aminotransferase (AST)
aspartate pada tikus
yang diberi HFD telah
berkurang (p < 0.05) dengan
penambahan cuka-telur disebabkan penurunan (p <
0.05) tahap malonaldehid
(MDA),
meningkatkan aktiviti
peroksidase dismutase (SOD)
dan glutation superoksida
(SOD).
Berbanding dengan
yang diberi makan SCD,
HFD
mengaruh titisan lipid menyeluruh intrahepar dan nekrosis hepatik.
Walau bagaimanapun,
penambahan HFD dengan
cuka-telur dapat
mengurangkan anomali ini dengan cara
kebergantungan-dos. Bersama,
profil komponen
cuka-telur menyumbang kepada pengurangan lipid dan kesan antioksidan
ke atas
tikus diberi
HFD. Oleh
yang demikian, cuka-telur
dijangka akan menjadi
bahan yang berguna
dalam makanan berfungsi
fisiologi untuk
merawat hiperlipidemia.
Kata kunci: Cuka-telur; hiperlipidemia; kemampuan
antioksidan; kesan pengurangan lipid; tikus berdiet tinggi lemak
RUJUKAN
Alsheikh-Ali, A.A., Kuvin, J.T. & Karas, R.H.
2004. Risk of adverse events with fibrates. American Journal of Cardiology 94:
935-938.
Alhaj, O.A., Kanekanian, A.D., Peters, A.C. & Tatham, A.S. 2010. Hypocholesterolaemic effect of Bifidobacterium animalis subsp. lactis(Bb12)
and trypsin casein hydrolysate. Food Chemistry 123(2): 430-435.
Betts,
M.J. & Russell, R.B. 2007. Amino acid properties and consequences of
substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for
the Analysis of Genetic Data. 2nd ed. edited by Barnes, M.R. New York:
Wiley. pp. 289-316.
Bhat,
Z.F., Sunil, K. & Bhat, H.F. 2015. Bioactive peptides of animal origin: A
review. Journal of Food Science and Technology-Mysore 52: 5377-5392.
Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P.V., Uday, K.P., Chetan, N. & Dinesh, K.B. 2014. Immunomodulatory
effects of protein hydrolysates from rohu (Labeo rohita) egg
in BALB/c mice. Food Research International 62: 1054-1061.
Chalamaiah, M., Yu, W.L.
& Wu, J.P. 2018. Immunomodulatory and anticancer protein hydrolysates
(peptides) from food proteins: A review. Food Chemistry 245: 205-222.
Chen,
J., Wu, Y., Yang, C.M., Xu, X.J. & Meng, Y.C.
2017. Antioxidant and hypolipidemic effects of
soymilk fermented via Lactococcus acidophilus MF204. Food & Function 8: 4414-4420.
Chen,
J.J., Mao, D., Yong, Y.Y., Li, J.L., Wei, H. & Lu, L. 2012. Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotuseryngii. Food Chemistry 130(3):
687-694.
Francisco,
H.C., Jorge, C.R.R., David, B.A. & Maira, R.S.C.
2016. Potential therapeutic applications of Mucuna prurienspeptide fractions purified by
high-performance liquid chromatography as angiotensin-converting enzyme
inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal of Medicinal Food 19(2): 187-195.
Gu, F., Jinmoon, K., Khizar, H., Xia, S.,
Feng, B. & Zhang, X. 2009. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction
products from a casein-glucose model system. Food Chemistry 117(1):
48-54.
Howard,
A. & Udenigwe, C.C. 2013. Mechanisms and
prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food & Function 4: 40-51.
Hogan,
S., Zhang, L., Li, J., Wang, H. & Zhou, K. 2009. Development of antioxidant
rich peptides from milk protein by microbial proteases and analysis of their
effects on lipid peroxidation in cooked beef [J]. Food Chemistry 117(3):
438-443.
Huang,
Y.L., Chow, C.J. & Tsai, Y.H. 2012. Composition, characteristics, and in
vitro physiological effect of the watersoluble polysaccharides from Cassia seed. Food Chemistry 134: 1967-1972.
Iranzo, O. 2011.
Manganese complexes displaying superoxide dismutase activity: A balance between
different factors. Bioorganic Chemistry 39(2): 73-87.
Kobayashi,
H., Hirabayashi, Y., Murakami, H. & Ueda, T.
2009. Anti-obesity effects of amino acid in high-fat diet induced obese mice. FASEB
J 23: 227.
Lee,
H.S., Lee, Y.J., Chung, Y.H., Nam, Y., Kim, S.T., Park, E.S., Hong, S.M. &
Yang, Y.K. 2015. Beneficial effects of red yeast rice on high-fat diet-induced
obesity, hyperlipidemia, and fatty liver in mice. Journal of Medicinal Food 18:
1095-1102.
Lin,
Y.H., Tsai, J.S. & Chen, G.W. 2017. Purification and identification of hypocholesterolemic peptides from freshwater clam
hydrolysate with in vitro gastrointestinal digestion. Journal of Food
Biochemistry 41(3): 1-8.
Liu,
K.L., Zhao, Y., Chen, F.S. & Fang, Y. 2015. Purification and identification
of Se-containing antioxidative peptides from
enzymatic hydrolysates of Se-enriched brown rice protein. Food Chemistry 187:
424-430.
Lu,
C.H., Liao, W.L., Wang, T.Y., Chen, C.C., Chen, Y.H., Tse,
S.S., Huang, Y.C. & Tsai, F.J. 2014. Association of adenosine
triphosphate-binding cassette transporter A1 gene polymorphism with lipid
profiles and early-onset Type 2 diabetes. Science Asia 40: 212-218.
Maseko, T., Howell, K., Dunshea, F.R. & Ng, K. 2014. Selenium-enriched Agaricus bisporusincreases
expression and activity of glutathione peroxidase-1 and expression of
glutathione peroxidase-2 in rat colon. Food Chemistry 146: 327-333.
Moayedi, A., Mora, L., Aristoy, M.C., Safari, M., Hashemie,
M. & Toldrá, F. 2018. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste
proteins fermented using Bacillus subtilis. Food Chemistry 250: 180-187.
Navab, M., Anantharamaiah, G.M., Reddy, S.T., Van Lenten, B.J.,
Wagner, A.C., Hama, S., Hough, G. & Bachini, E.
2005. An oral apoJ peptide renders HDL
anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis
in apolipoprotein E-null mice. Arteriosclerosis
Thrombosis and Vascular Biology 25: 1932-1937.
Nielsen,
P.M., Petersen, D., Dambmann, C., Nielsen, P.M.,
Petersen, D. & Dambmann, C. 2010. Improved method
for determining food protein degree of hydrolysis. Journal of Food Science 66(5):
642-646.
Padmavathi, R., Senthilnathan, P., Chodon, D.
& Sakthisekaran, D. 2006. Therapeutic effect of
paclitaxel and propolis on lipid peroxidation and
antioxidant system in 7,12 dimethyl benz(a)
anthracene-induced breast cancer in female Sprague Dawley rats. Life
Sciences 78: 2820-2825.
Pan,
X., Zhao, Y.Q., Hu, F.Y. & Wang, B. 2016. Preparation and identification of
antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods 25:
220-230.
Qian,
Z.J., Jung, W.K., Byun, H.G. & Kim, S.K. 2008. Protective effect of an antioxidative peptide purified from gastrointestinal
digests of oyster, Crassostrea gigasagainst free radical induced DNA damage. Bioresource Technology 99: 3365-3371.
Ren,
J.Y., Zhao, M.M., Shi, J., Wang, J.S., Jiang, Y.M., Cui, C., Kakuda, Y. & Xue, J.S. 2008.
Purification and identification of antioxidant peptides from grass
carp muscle hydrolysates by consecutive chromatography and electrospray
ionization- mass spectrometry. Food Chemistry 108(2): 727-736.
Shazly, A.B., He, Z.Y.,
El-Aziz, M.A., Zeng, M.M., Zhang, S., Qin, F. & Chen, J. 2017.
Fractionation and identification of novel antioxidant peptides from buffalo and
bovine casein hydrolysates. Food Chemistry 232: 753-762.
Uchida,
K. & Kawakishi, S. 1992. Sequence-dependent
reactivity of histidine containing peptides with copper (II)/ascorbate. Journal
of Agricultural and Food Chemistry 40: 13-16.
Vaskonen, T. 2003. Dietary
minerals and modification of cardiovascular risk factors. Journal of
Nutritional Biochemistry 14: 492-506.
Wang,
B.K., Liu, W.B., Chao, X. & Li, X.F. 2017. Dietary carbohydrate levels and
lipid sources modulate the growth performance, fatty acid profiles and
intermediary metabolism of blunt snout bream Megalobrama amblycephalain an interactive pattern. Aquaculture 481: 140-153.
Wang,
S.Y., Chang, C.Y. & Chen, C.W. 2017. Effects of vinegar-egg on growth
inhibition, differentiation human leukemic U937 cells and its immunomodulatory
activity. Journal of Food and Drug Analysis 26(2): 731-740.
Xie, W.D., Zhao, Y.N.
& Du, L.J. 2012. Emerging approaches of traditional Chinese medicine
formulas for the treatment of hyperlipidemia. Journal of Ethnopharmacology 140: 345-367.
Zhong, F., Zhang, X.,
Ma, J. & Shoemaker, C.F. 2007. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates. Food Research International 40:
756-762.
Zhu,
Z., Lin, Z., Jiang, H., Jiang, Y., Zhao, M. & Liu, X. 2017. Hypolipidemic effect of Youcha in hyperlipidemia rats induced by high-fat diet. Food & Function 8:
1680-1687.
*Pengarang untuk surat-menyurat;
email: zengqingmei-1@163.com
|