Sains Malaysiana 48(6)(2019): 1259–1265
http://dx.doi.org/10.17576/jsm-2019-4806-13
Refractive Index and
Sensing of Glucose Molarities determined using Au-Cr K-SPR at 670/785 nm
Wavelength
(Indeks Biasan dan Pengesanan
Kemolaran Glukosa melalui Au-Cr K-SPR
pada Panjang Gelombang 670/785 nm)
P. SUSTHITHA MENON1*, BUDI MULYANTI2, NUR AKMAR JAMIL1, CHANDRA WULANDARI3, HARBI SETYO NUGROHO3, GAN
SIEW MEI1, NOOR FAIZAH ZAINUL ABIDIN1, LILIK HASANAH3, ROER EKA PAWINANTO2 & DILLA DURYHA BERHANUDDIN1
1Institute of
Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Electrical
Engineering Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154
Jawa Barat, Indonesia
3Department of Physics
Education, Universitas Pendidikan Indonesia (UPI), Bandung 40154 Jawa Barat, Indonesia
Diserahkan: 2 Januari
2019/Diterima: 28 Februari 2019
ABSTRACT
In this paper, we
determine the optical refractive indices of different molarities of glucose
using nano-laminated gold/chromium (Au-Cr) thin film via Kretschmann-based
Surface Plasmon Resonance (K-SPR) sensing with angular
interrogation. The nano-laminated Au-Cr K-SPR sensor
detects the glucose presence in low- and high-concentration of 4-12 mmol/L and
55-277 mmol/L, respectively, under the exposure of 670 nm and 785 nm optical
wavelengths. The experimental results showed that the minimum limit of detection
(LOD)
of Au-Cr K-SPR is 4 mmol/L and the glucose sensor sensitivities are
in average of 3.41 o/M and 2.73o/M
at 670 nm and 785 nm optical wavelength, respectively. Stable sensitivity for
each concentration also shown from the sensorgram results, indicates the stable
performance of nano-laminated Au-Cr SPR sensor to detect glucose in
the range from mmol/L up to dmol/L. Values of refractive indices for glucose
molarities obtained are 1.33187 (4 mmol/L) and 1.3191 (4 mmol/L) at 670 and 785
nm wavelength, respectively. These RI values are beneficial for
numerical simulation of glucose sensors using nano-laminated Au-Cr thin films
which have been reported for the first time. The sensor can be eventually
deployed in integrated photonic sensing devices comprising of multiple analyte
detection for lab-on-chip (LoC) and point-of care (PoC) applications.
Keywords: Angular
interrogation; glucose sensor; gold/chromium; Kretschmann; nano-laminated;
refractive index; surface plasmon resonance
ABSTRAK
Dalam kajian ini, indeks
biasan optik daripada kemolaran glukosa yang berbeza ditentukan
dengan menggunakan filem nipis nano emas/kromium (Au-Cr) melalui
sensor resonan plasmon permukaan berasaskan konfigurasi Kretschmann
(K-SPR)
dengan interogasi sudut. Sensor Au-Cr K-SPR berlapis nano mengesan kehadiran
glukosa dalam kepekatan rendah dan tinggi iaitu 4-12 mmol/L dan
55-277 mmol/L masing-masing di bawah pendedahan panjang gelombang
optik 670 nm dan 785 nm. Keputusan uji kaji menunjukkan bahawa had
minimum pengesanan (LOD)
Au-Cr K-SPR adalah 4 mmol/L dan kepekaan sensor glukosa adalah
secara purata sebanyak 3.41°/M dan 2.73°/M, masing-masing
pada panjang gelombang 670 nm dan 785 nm. Pengesanan yang stabil
daripada sensorgram untuk setiap kepekatan glukosa menunjukkan prestasi
sensor Au-Cr SPR nano-lamina
untuk mengesan glukosa dalam lingkungan dari mmol/L sehingga dmol/L.
Nilai indeks biasan (RI) untuk kemolaran glukosa yang diperoleh
ialah 1.33187 (4 mmol/L) dan 1.3191 (4 mmol/L) pada panjang gelombang
670 dan 785 nm. Nilai RI ini bermanfaat untuk simulasi berangka
sensor glukosa menggunakan filem tipis nano-lamina Au-Cr yang dilaporkan
buat pertama kali. Sensor ini akhirnya boleh digunakan dalam peranti
terintegrasi fotonik yang bersepadu yang terdiri daripada pelbagai
pengesanan analit untuk aplikasi makmal-atas-cip (LoC) dan point-of
care (PoC).
Kata kunci: Emas/kromium; indeks biasan; interograsi sudut;
konfigurasi Kretschmann; nano-lamina; resonan plasmon permukaan; sensor glukosa
RUJUKAN
Badugu, R., Lakowicz, J.R.
& Geddes, C.D. 2015. Fluorescence sensors for monosaccharides based on the
6-methylquinolinium nucleus and boronic acid moiety: Potential application to
ophthalmic diagnostics. Talanta 65(2005): 762-768.
Bowman, P., Flanagan, S.E.
& Hattersley, A.T. 2018. Review article future roadmaps for precision
medicine applied to diabetes: Rising to the challenge of heterogeneity. J.
Diabetes Res. 2018: 1-12.
Bratlie, K.M., York, R.L.,
Invernale, M.A., Langer, R. & Anderson, D.G. 2012. Materials for diabetes therapeutics. Adv. Heal. Mater 1(3): 267-284.
Breault-Turcot, J.,
Poirier-Richard, H.P., Couture, M., Pelechacz, D. & Masson, J.F. 2015.
Single chip SPR and fluorescent ELISA assay of prostrate specific antigen. Lab
on a Chip 15: 4433-4440.
Chao, C.Y., Fung, W. & Guo,
J. 2006. Polymer microring resonators for biochemical sensing applications. IEEE
J. of Selected Topics in Quantum Electronics 12(1): 134-142.
Dovc, K., Cargnelutti, K.,
Sturm, A., Selb, J. & Bratina, N. 2018. Continuous glucose monitoring use
and glucose variability in pre-school children with type 1 diabetes. Diabetes
Res. Clin. Pract. 147(2019): 76-80.
Fang, H., Kaur, G. & Wang,
B. 2004. Progress in boronic acid-based fluorescent glucose sensors. J.
Fluoresc. 14(5): 481-489.
Gan, S.M., Menon, P.S., Mohamad,
N.R., Jamil, N.A. & Majlis, B.Y. 2019. FDTD simulation of Kretschmann
based Cr-Ag-ITO SPR for refractive index sensor. Materials Today:
Proceedings 7(2): 668-674.
Gan, S.M., Mohamad, N.R., Jamil,
N.A., Majlis, B.Y. & Menon, P.S. 2018. Pengoptimuman sensor
resonans plasmon permukaan berdasarkan Kretschmann dengan Kaedah
Taguchi. Sains Malaysiana 47(10): 2565-2571.
Haroon, H., Shaari, S., Menon,
P.S., Razak, H.A. & Bidin, M. 2013. Application of statistical method to
investigate the effects of design parameters on the performance of microring
resonator channel dropping filter. Int. J. Numer. Model 26(2013):
670-679.
Hsieh, H.V., Pfeiffer, Z.A.,
Amiss, T.J., Sherman, D.B. & Pitner, J.B. 2004. Direct detection of glucose
by surface plasmon resonance with bacterial glucose/galactose-binding protein. Biosensors
and Bioelectronics 19(2004): 653-660.
Iacono, F., Poskus, E.,
Trabucchi, A., Guerra, L.L., Faccinetti, N.I. & Valdez, S.N. 2012. Surface
plasmon resonance reveals a different pattern of proinsulin autoantibodies
concentration and affinity in diabetic patients. PLoS One 7(3): 1-7.
International Diabetes
Federation https://www.idf.org. Accessed on 29 December 2018.
Jamil, N.A., Menon, P.S.,
Gan, S.M. & Majlis, B.Y. 2018a. Sensitivity enhancement of urea
biosensor based on surface plasmon resonance and Kretschmann configuration
with graphene-MoS2 hybrid structure. Sains Malaysiana 47(5):
1033-1038.
Jamil, N.A., Menon,
P.S., Shaari, S., Mohamed, M.A., Majils, B.Y. 2018b. Taguchi optimization
of surface plasmon resonance-kretschmann biosensor using FDTD. IEEE
International Conference on Semiconductor Electronics, Proceedings,
ICSE. doi: 10.1109/SMELEC.2018.8481216.
Jamil, N.A., Menon,
P.S., Said, F.A., Tarumaraja, K.A., Mei, G.S. & Majlis, B.Y.
2017a. Graphene-based surface plasmon resonance urea biosensor using
Kretschmann configuration. Proceedings of the 2017 IEEE Regional
Symposium on Micro and Nanoelectronics, RSM 2017. pp. 112-115.
doi:10.1109/RSM.2017.8069122.
Jamil, N.A.B., Menon,
P.S., Mei, G.S., Shaari, S. & Majlis, B.Y. 2017b. Urea biosensor
utilizing graphene-MoS2 and Kretschmann-based SPR. TENCON 2017
- 2017 IEEE Region 10 Conference. pp. 1973-1977. doi:10.1109/TENCON.2017.8228183.
Maheran, A.H.A., Menon,
P. S., Ahmad, I. & Shaari, S. 2014. Effect of Halo structure variations on
the threshold voltage of a 22 nm gate length NMOS transistor. Mater. Sci.
Semicond. Process 17(2014): 155-161.
Makaram, P., Owens, D.
& Aceros, J. 2014. Trends in nanomaterial-based non-invasive diabetes. Diagnostics 4(2014): 27-46.
Massey, C.N., Feig,
E.H., Duque-serrano, L., Wexler, D., Tedlie, J. & Huffman, J.C. 2018.
Well-being interventions for individuals with diabetes: A systematic review. Diabetes
Res. Clin. Pract. 147(2019): 118-133.
Menon, P.S., Said, F.A.,
Gan, S.M., Berhanuddin, D.D., Umar, A.A., Shaari, S. & Majlis, B.Y. 2018.
Urea and creatinine detection on nano- laminated gold thin film using
Kretschmann- based surface plasmon resonance biosensor. PLoS ONE 13(7): 1-14.
Menon, P.S., Kandiah,
K., Ehsan, A.A. & Shaari, S. 2010. Concentration-dependent minority carrier
lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based
on spin-on chemical fabrication methodology. Int. J. Numer. Model 24(5):
465-477.
Miyazaki, C.M., Shimizu,
F.M., Salazar, J.R.M., Oliveira Jr, O.N. & Ferreira, M. 2017. Surface
plasmon resonance biosensor for enzymatic detection of small analytes. Nanotechnology 28(2017): 145501-145507.
Mohamad,
N.R., Gan, S.M., Jamil, N.A., Majlis, B.Y. & Menon, P.S. 2019.
Influence of ultrathin chromium adhesion layer on different metal
thicknesses of SPR-based sensor using FDTD. Materials Today:
Proceedings 7(2): 732-737.
Mulyanti, B., Hasanah,
L., Hariyadi, T., Novitasari, R., Pantjawati, A.B., Yuwono, H. &
Khairurrijal. 2015. The influence of glucose concentration to resonant
wavelength shift of polymer-based microring resonator. Adv. Mat.
Res. 1112: 32-36.
Nathan, D.M. & Edic,
D. 2010. The diabetes control and complications trial/epidemiology of diabetes
interventions and complications study at 30 years: Overview. Diabetes Care 37(2014):
9-16.
National Diabetes
(NADI). http://www.diabetesmalaysia.com. my. Accessed
on 21-Dec-2018.
Said, F.A., Menon, P.S.,
Rajendran, V., Shaari, S. & Majlis, B.Y. 2017. Investigation of
graphene-on-metal substrates for SPR-based sensor using finite-difference time
domain. IET Nanobiotechnology 11(8): 981-986.
Said, F.A., Menon, P.S.,
Nawi, M.N., Zain, A.R., Jalar, A. & Majlis, B.Y. 2016. Copper-graphene
SPR-based biosensor for urea detection. IEEE International Conference on
Semiconductor Electronics (ICSE). pp. 264-267.
Said, F.A., Menon, P.S.,
Shaari, S. & Majlis, B.Y. 2015. FDTD analysis on geometrical parameters of
bimetallic localized surface plasmon resonance-based sensor and detection of
alcohol in water. Int. J. Simul. Syst. Sci. Technol. 16(4): 6.1-6.5.
Angharad, S., Simpson,
S. & Wood, A. 2016. New and Emerging Non-Invasive Glucose Monitoring
Technologies. United Kingdom: University of Birmingham.
Tarumaraja, K.A.,
Susthitha Menon, P.N., Visvanathan, V., Fairus Atida, S., Nur Akmar, J., Abang
Annuar, Ehsan, Sahbudin, S., Burhanuddin Yeop, M. & Azman Jalar @ Jalil. 2016. FDTD numerical analysis of SPR sensing using graphene-based photonic
crystal. IEEE International Conference on Semiconductor Electronics (ICSE) 2016(9):
79-82.
Wang, C., Neil, D.L.
& Home, P. 2018. 2020 vision - An overview of prospects for diabetes
management and prevention in the next decade. Diabetes Res. Clin. Pract. 143(2018):
101-112.
Wang, D.S. & Fan,
S.K. 2016. Microfluidic surface plasmon resonance sensors: From principles to
point-of-care applications. Sensors 16(8): 1175.
Yetisen, A.K., Butt, H.,
Volpatti, L.R., Sheldon, K.S., Kwang, S. & Hyun, S. 2015. Photonic hydrogel
sensors. Biotechnol. Adv. 34(3): 250-271.
Yoo, E.H. & Lee,
S.Y. 2010. Glucose biosensors: An overview of use in clinical practice. Sensors 10(2010): 4558-4576.
Yorek, M., Malik, R.A.,
Calcutt, N.A. & Vinik, A. 2018. Editorial diabetic neuropathy: New insights
to early diagnosis and treatments. J. Diabetes Res. 2018: 5378439.
*Pengarang
untuk surat-menyurat; email: susi@ukm.edu.my
|