Sains Malaysiana 48(6)(2019): 1239–1249
http://dx.doi.org/10.17576/jsm-2019-4806-11
3-Dimensional Electric
Field Distributions of Castellated and Straight Dielectrophoresis Electrodes
for Cell Separation
(Pengagihan Medan
Elektrik 3-Dimensi Elektrod Dielektroforesis Kekota dan Lurus untuk Pembahagian
Sel)
FARAHDIANA WAN YUNUS, MUHAMMAD RAMDZAN BUYONG, JUMRIL YUNAS,
BURHANUDIN YEOP MAJLIS
& AZRUL AZLAN HAMZAH*
Institute of
Microenegineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
13 Disember 2018/Diterima: 28 Februari 2019
ABSTRACT
This paper discusses
the 3-dimensional (3D) electric field distributions on the surface and across
the bulk volume of dielectrophoresis (DEP) electrodes. The importance
of obtained high electric field is to ensure that biological particles will be
able to separate even at low voltage potentials in order to avoid damage to the
biological particles. Two electrodes - straight and castellated, were designed
using the COMSOL Multiphysics Software Version 5.2 to compare the
surface distribution and volume electric fields along the x, y and z axes. The
results showed that castellated electrodes showcased higher electric fields for
both the surface and volume factors along all axes. The maximum value of volume
electric field results was 3.94×105 V/m
along the x-axis, 3.80×105 V/m along the y-axis and 1.65×105 V/m
along the z-axis. The maximum value of surface electric fields distributions
was 3.39×105 V/m along the x-axis, 2.87×105 V/m
along the y-axis and 1.14×105 V/m along the z-axis.
Additionally, the uniformity of the electric field lines distribution from the COMSOL Multiphysics also indicated that castellated electrodes have a
much higher uniformity. The experimental results showed that the castellated
electrodes separated particles much faster at 69 s, as compared to straight
electrodes at 112 s. Henceforth, this has proven that castellated electrodes
have a high electric field as it separates much faster as compared to straight
electrodes
.
Keywords: Biological
particles; castellated electrodes; DEP; dielectrophoresis;
electric fields; straight electrodes
ABSTRAK
Kajian ini membincangkan
aliran medan elektrik 3-dimensi (3D) pada permukaan dan isi padu elektrod
dieletroforesis (DEP). Medan elektik begitu penting
bagi memastikan sel zarah biologi mampu untuk dipisahkan walaupun pada voltan
yang rendah bagi mengelakkan kerosakan pada sel zarah tersebut. Dua elektrod,
lurus dan kekota direka bentuk menggunakan perisian COMSOL Multiphysics
versi 5.2 bagi membandingkan taburan medan elektrik di permukaan elektrod dan
isi padu elektrod pada paksi x, y dan z. Keputusan menunjukkan bahawa elektrod
kekota mempunyai medan elektrik yang tertinggi pada kedua-dua medan elektrik
permukaan dan medan elektrik isi padu. Keputusan pada medan elektrik berisi
padu adalah bernilai 3.94×105 V/m
pada paksi x, 3.80×105 V/m pada paksi y dan 1.65×105 V/m
pada paksi z, manakala keputusan pada medan elektrik permukaan adalah 3.39×105 V/m
pada paksi x, 2.87×105 V/m paksi y dan 1.14×105 V/m
pada paksi z. Tambahan pula, keputusan COMSOL Multiphysic juga
menjelaskan keseragaman medan elektrik pada elektrod kekota adalah lebih
tinggi. Keputusan menunjukkan elektrod kekota berjaya mengasingkan zarah dengan
lebih cepat iaitu pada 69 s berbanding elektrod lurus pada 112 s. Oleh yang
demikian, ini telah membuktikan bahawa elektrod kekota mempunyai daya medan
elektrik yang tinggi setelah ia berjaya memisahkan sampel sel zarah tersebut
lebih laju daripada elektrod lurus.
Kata kunci: DEP;
dielektroforesis; elektrod kekota; elektrod lurus; medan elektrik; zarah
biologi
RUJUKAN
Abidin, H.E.Z., Hamzah, A.A., Majlis, B.Y., Yunas, J., Hamid, N.A.
& Abidin, U. 2013. Electrical characteristics of double stacked ppy-pva
supercapacitor for powering biomedical mems devices. Microelectronic
Engineering 111: 374-378.
Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J.
& Gascoyne, P.R. 1995. Separation of human breast cancer cells from blood
by differential dielectric affinity. Proceedings of the National Academy of
Sciences 92(3): 860-864.
Burham, N., Hamzah, A.A. & Majlis, B.Y. 2014a. Mechanical
characteristics of porous silicon membrane for filtration in artificial kidney. IEEE International Conference on Semiconductor Electronics, Proceedings,
ICSE. pp. 119-122.
Burham, N., Hamzah, A.A. & Majlis, B.Y. 2014b. Effect of
hydrofluoric acid (HF) concentration to pores size diameter of silicon
membrane. Bio-Medical Materials and Engineering 24(6): 2203-2209.
Burham, N., Hamzah,
A.A. & Majlis, B.Y. 2015. Effect of isopropyl alcohol (IPA) on etching rate
and surface roughness of silicon etched in KOH solution. RSM 2015-2015 IEEE
Regional Symposium on Micro and Nano Electronics, Proceedings. pp. 1-4.
Buyong,
M.R., Larki, F., Takamura, Y., Aziz, N.A., Yunas, J., Hamzah, A.A. &
Majlis, B.Y. 2016. Implementing the concept of dielectrophoresis in glomerular
filtration of human kidneys. IEEE International Conference on Semiconductor
Electronics, Proceedings, ICSE. pp. 33-37.
Buyong,
M.R., Aziz, N.A., Hamzah, A.A. & Majlis, B.Y. 2014a. Dielectrophoretic
characterization of array type microelectrodes. IEEE International Conference
on Semiconductor Electronics, Proceedings, ICSE (Dc). pp. 240-243.
Buyong,
M.R., Aziz, N.A., Hamzah, A.A., Wee, M.F.M.R. & Majlis, B.Y. 2014b. Finite
element modeling of dielectrophoretic microelectrodes based on a array and
ratchet type. IEEE International Conference on Semiconductor Electronics,
Proceedings, ICSE. pp. 3: 236-239.
Çetin, B.,
Kang, Y., Wu, Z. & Li, D. 2009. Continuous particle separation by size via
AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 30(5): 766-772.
Díaz, R.
& Payen, S. 2013. Biological cell separation using dielectrophoresis in a
microfluidic device. Www-Bsac.Eecs. Berkeley.Edu. pp. 1-4.
Hamzah,
A.A., Yunas, J., Majlis, B.Y. & Ahmad, I. 2008. Sputtered encapsulation as
wafer level packaging for isolatable MEMS devices: A technique demonstrated on
a capacitive accelerometer. Sensors 8(11): 7438-7452.
Hamzah,
A.A., Zainal Abidin, H.E., Yeop Majlis, B., Mohd Nor, M., Ismardi, A., Sugandi,
G., Tiong, T.Y., Dee, C.F. & Yunas, J. 2013. Electrochemically deposited
and etched membranes with precisely sized micropores for biological fluids
microfiltration. Journal of Micromechanics and Microengineering 23(7):
074007.
Ismail, S.,
Mahmood, N.H. & Razak, M.A.A. 2017. Optimization of interdigitated
electrodes in electric field distribution and thermal effect. Journal of
Telecommunication, Electronic and Computer Engineering 9(3): 85-89.
Markx, G.H.
2007. Tissue engineering with electric fields: Investigation of the shape of
mammalian cell aggregates formed at interdigitated oppositely castellated
electrodes. Electrophoresis 28(21): 3821-3828.
Marsi, N.,
Majlis, B.Y., Hamzah, A.A. & Mohd-Yasin, F. 2014. The mechanical and
electrical effects of MEMS capacitive pressure sensor based 3C-SiC for extreme
temperature. Journal of Engineering 2014: 715167.
Mmm, G.O.,
Mmm, G.O., Psf, M.M.M. & Psf, M.M.M. 2018. The effect of ZnO loading for
the enhancement of PSF/ZnO-GO mixed matrix membrane performance. Sains
Malaysiana 47(9): 2035-2045.
Morgan, H.,
Hughes, M.P. & Green, N.G. 1999. Separation of submicron bioparticles by
dielectrophoresis. Biophysical Journal 77(1): 516-525.
Nakano, A.,
Chao, T.C., Camacho-Alanis, F. & Ros, A. 2011. Immunoglobulin G and bovine
serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 32(17): 2314-2322.
Pethig, R.
2010. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4(2): 1-35.
Pethig, R.,
Menachery, A., Pells, S. & De Sousa, P. 2010. Dielectrophoresis: A review
of applications for stem cell research. Journal of Biomedicine and
Biotechnology 2010: Article ID. 182581.
Piacentini,
N., Mernier, G., Tornay, R. & Renaud, P. 2011a. Separation of platelets
from other blood cells in continuous-flow by dielectrophoresis
field-flow-fractionation. Biomicrofluidics 5(3): 1-8.
Piacentini,
N., Mernier, G., Tornay, R. & Renaud, P. 2011b. Separation of platelets
from other blood cells in continuous-flow by dielectrophoresis
field-flow-fractionation. Biomicrofluidics 5(3): 034122-034122-8.
Qian, C.,
Huang, H., Chen, L., Li, X., Ge, Z., Chen, T., Yang, Z. & Sun, L. 2014.
Dielectrophoresis for bioparticle manipulation. International Journal of
Molecular Sciences 15(10): 18281- 18309.
Rabiatul,
N., Tajul, A., Abd, N. & Majlis, B.Y. 2018. Separation of micro engineered
particle using dielectrophoresis technique. 2018 IEEE International
Conference on Semiconductor Electronics (ICSE) 2018(8): 69-72.
Shamsudin,
F.M., Radiman, S., Abdullah, Y. & Hamid, N.A. 2018. The effect of annealing
to the hardness of high Y2O3 -oxide dispersion strengthened (ODS) ferritic
steels. Sains Malaysiana 47(1): 189-193.
Seyedi, S.S.
& Matyushov, D.V. 2018. Protein dielectrophoresis in solution. Journal
of Physical Chemistry B 122(39): 9119- 9127.
Stevens,
K.A. & Jaykus, L.A. 2004. Bacterial separation and concentration from
complex sample matrices: A review. Critical Reviews in Microbiology 30(1):
7-24.
Tada, S.,
Omi, Y. & Eguchi, M. 2018. Analysis of the dielectrophoretic properties of
cells using the isomotive AC electric field. Biomicrofluidics 12(4):
044103.
Wang, X.B.,
Huang, Y., Gascoyne, P.R.C. & Becker, F.F. 1997. Dielectrophoretic manipulation
of particles. IEEE Transactions on Industry Applications 33(3): 660-669.
Yang, J.,
Huang, Y., Wang, X.B., Becker, F.F. & Gascoyne, P.R.C. 2000. Differential
analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical
Journal 78(5): 2680-2689.
Yunas, J.,
Hamzah, A.A. & Majlis, B.Y. 2009. Surface micromachined on-chip transformer
fabricated on glass substrate. Microsystem Technologies 15(4): 547-552.
Yunus, F.W.,
Hamzah, A.A., Norzin, M.S., Buyong, M.R. & Yunas, J. 2018.
Dielectrophoresis: Iron dificient anemic red blood cells for artificial kidney
purposes. 2018 IEEE International Conference on Semiconductor Electronics
(ICSE). pp. 5-8.
Yunus, F.W.,
Hamzah, A.A., Buyong, M.R., Yunas, J. & Majlis, B.Y. 2017. Negative charge
dielectrophoresis by using different radius of electrodes for biological
particles. Proceedings of the 2017 IEEE Regional Symposium on Micro and
Nanoelectronics, RSM 2017: 84-87.
*Pengarang
untuk surat-menyurat; email: azlanhamzah@ukm.edu.my
|