Sains Malaysiana 48(4)(2019): 719–725
http://dx.doi.org/10.17576/jsm-2019-4804-03
Adsorption of Mercury(II) using Activated
Carbon Produced from Bambusa vulgaris var. striata in a Fixed-Bed Column
(Penjerapan daripada Merkuri(II) menggunakan Karbon
Teraktif yang Dihasilkan daripada Bambusa vulgaris var. striata dalam Kolum Lapisan Tetap)
EKA MARYA MISTAR1, IDA HASMITA1, TATA ALFATAH2, ABRAR MUSLIM3 & MUHAMMAD DANI SUPARDAN3*
1Department of Chemical Engineering, Universitas
Serambi Mekkah, Banda Aceh, Indonesia
2Environment and Forestry Office of the
Provincial Government of Aceh, Banda Aceh, Indonesia
3Department of Chemical Engineering,
Universitas Syiah Kuala, Banda Aceh, Indonesia
Diserahkan: 22
Julai 2018/Diterima: 11 Februari 2019
ABSTRACT
Pollution by mercury dissolved in aqueous
media causes a crucial problem for health and environment. In
this study, activated carbon from Bambusa vulgaris var. striata
was produced by chemical activation using NaOH for mercury
adsorption. The effects of mercury initial concentrations namely
50 and 100 mg/L on the breakthrough characteristics of the adsorption
process were defined. The mechanism of the adsorption process
through the fixed-bed column was fitted to the Thomas model. The
activated carbon was characterized by scanning electron microscopy
and energy-dispersive X-ray spectroscopy. The adsorption study
with a continuous system and using the Thomas model showed that
the highest adsorption capacity (q0) of mercury ions is 218.08 mg/g. It can be concluded that
activated carbon from Bambusa vulgaris var. striata
has a great potential to act as an adsorbent to remove mercury
from water.
Keywords: Activated carbon; adsorption;
Bambusa vulgaris var. striata; mercury; Thomas model
ABSTRAK
Pencemaran merkuri terlarut dalam air
menyebabkan masalah kesihatan kritikal dan mencemarkan alam sekitar.
Dalam kajian ini, karbon teraktif daripada Bambusa vulgaris var. striata
dihasilkan melalui pengaktifan kimia menggunakan NaOH untuk
penjerapan merkuri. Kesan kepekatan merkuri awal iaitu 50 dan
100 mg/L ke atas kejayaan proses penjerapan telah ditakrifkan.
Mekanisme proses penjerapan melalui kolum lapisan tetap telah
disesuaikan dengan Model Thomas. Karbon teraktif yang dicirikan
melalui mikroskopi imbasan elektron dan spektroskopi serakan tenaga
sinar-X. Kajian penjerapan dengan sistem yang berterusan dan menggunakan
Model Thomas menunjukkan kapasiti penjerapan tertinggi (q0) ion
merkuri adalah 218.08 mg/g. Maka disimpulkan bahawa karbon teraktif
daripada Bambusa vulgaris var. striata berpotensi
besar untuk bertindak sebagai penjerat untuk mengasingkan merkuri
daripada air.
Kata kunci: Bambusa vulgaris var. striata; karbon; merkuri; model Thomas; penjerapan
RUJUKAN
Alalwan,
H.A., Abbas, M.N., Abudi, Z.N. & Alminshid, A.H. 2018. Adsorption of
thallium ion (Tl+3) from aqueous solutions by rice
husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Environmental
Technology & Innovation 12: 1-13.
Alvarez,
N.M.M., Pastrana, J.M., Lagos, Y. & Lozada, J.J. 2018. Evaluation of
mercury (Hg2+) adsorption capacity using exhausted coffee waste. Sustainable
Chemistry and Pharmacy 10: 60-70.
Andal, N.M.
& Sakthi, V. 2010. A comparative study on the sorption characteristics of
Pb(II) and Hg(II) onto activated carbon. E-Journal of Chemistry 7(3):
967-974.
Arias,
F.E.A., Beneduci, A., Chidichimo, F., Furia, E. & Straface, S. 2017. Study
of the adsorption of mercury (II) on lignocellulosic materials under static and
dynamic conditions. Chemosphere 180: 11-23.
Asasian, N.,
Kaghazchi, T., Faramarzi, A., Hakimi-Siboni, A., Asadi-Keshes, R., Kavand, M.
& Mohtashami, S.A. 2014. Enhanced mercury adsorption capacity by
sulfurization of activated carbon with SO2 in a bubbling fluidized bed
reactor. Journal of the Taiwan Institute of Chemical Engineers 45(4):
1588-1596.
Asasian, N.,
Kaghazchi, T. & Soleimani, M. 2012. Elimination of mercury by adsorption
onto activated carbon prepared from the biomass material. Journal of
Industrial and Engineering Chemistry 18(1): 283-289.
Bhatnagar,
A., Hogland, W., Marques, M. & Sillanpaa, M. 2013. An overview of the
modification methods of activated carbon for its water treatment applications. Chemical
Engineering Journal 219: 499-511.
Bhatt, R.
& Padmaj, P. 2019. A chitosan-thiomer polymer for highly efficacious
adsorption of mercury. Carbohydrate Polymers 207: 663-674.
Cazetta,
A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins,
A.C., Silva, T.L., Moraes, J.C.G. & Almeida, V.C. 2011. NaOH-activated
carbon of high surface area produced from coconut shell: Kinetics and
equilibrium studies from the methylene blue adsorption. Chemical Engineering
Journal 174: 117-125.
Chu, K.H.
2010. Fixed bed sorption: Setting the record straight on the Bohart-Adams and
Thomas models. Journal of Hazardous Materials 177(1-3): 1006-1012.
Gonzalez,
P.G. & Pliego-Cuervo, Y.B. 2014. Adsorption of Cd (II), Hg (II) and Zn (II)
from aqueous solution using mesoporous activated carbon produced from Bambusa
vulgaris schrad. Chemical Engineering Research and Design 92(11):
2715-2724.
Gonzalez, P.G. &
Pliego-Cuervo, Y.B. 2013. Physicochemical and microtextural characterization of
activated carbons produced from water steam activation of three bamboo species. Journal of Analytical and Applied Pyrolysis 99: 32-39.
Hassan, A.F. & Hrdina, R. 2018. Chitosan/nanohydroxyapatite
composite based scallop shells as an efficient adsorbent for mercuric
ions: Static and dynamic adsorption
studies. International Journal of Biological Macromolecules
109: 507-516.
Hassan, S.S.M., Kamel, A.K., Awwad, N.S.,
Aboterika, A.H.A. & Yahia, I.S. 2017. Adsorbent for efficient removal of
mercury(II) from aqueous solution. European Chemical Bulletin 6(12):
558-563.
Ismaiel, A.A., Aroua, M.K. & Yusoff,
R. 2013. Palm shell activated carbon impregnated with task-specific
ionic-liquids as a novel adsorbent for the removal of mercury from contaminated
water. Chemical Engineering Journal 225: 306-314.
Johari, K., Saman, N., Song, S.T., Heng,
J.Y.Y. & Mat, H. 2014. Study of Hg(II) removal from aqueous solution using
lignocellulosic coconut fiber biosorbents: Equilibrium and kinetic evaluation. Chemical
Engineering Communications 201(9): 1198-1220.
Kabiri, S., Tran, D.N.H., Cole, M.A.
& Losic, D. 2016. Functionalized 3-dimensional (3-d) graphene composite for
high efficiency removal of mercury. Environmental Science: Water Research
& Technology 2(2): 390-402.
Lu, X., Jiang, J., Sun, K., Wang, J.
& Zhang, Y. 2014. Influence of the pore structure and surface chemical
properties of activated carbon on the adsorption of mercury from aqueous
solutions. Marine Pollution Bulletin 78(1-2): 69-76.
Mistar, E.M., Saisa, S., Muslim, A.,
Alfatah, T. & Supardan, M.D. 2018. Preparation and characterization of a
high surface area of activated carbon from Bambusa vulgaris-Effect of
NaOH activation and pyrolysis temperature. IOP Conference Series: Materials
Science and Engineering 334: 012051.
Mondal, D.K., Nandi, B.K. & Purkait,
M.K. 2013. Removal of mercury (II) from aqueous solution using bamboo leaf
powder: Equilibrium, thermodynamic and kinetic studies. Journal of
Environmental Chemical Engineering 1(4): 891-898.
Shafiq, M., Alazba, A.A. & Amin, M.T.
2018. Removal of heavy metals from wastewater using date palm as a biosorbent:
A comparative review. Sains Malaysiana 47(1): 35-49.
Sun, N., Wen, X. & Yan, C. 2018. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized
cellulose from sugarcane bagasse. International Journal of
Biological Macromolecules 108: 1199-1206.
Tan, Z., Qiu, J., Zeng, H., Liu, H. &
Xiang, J. 2011. Removal of elemental mercury by bamboo charcoal impregnated
with H2O2. Fuel 90(4): 1471-1475.
Trgo, M., Vukojevic, N.M. & Peric, J.
2011. Application of mathematical empirical models to dynamic removal of lead
on natural zeolite clinoptilolite in a fixed bed column. Indian Journal of
Chemical Technology 18: 123-131.
Vargas, A.M.M., Garcia, C.A., Reis, E.M.,
Lenzi, E., Costa, W.F. & Almeida, V.C. 2010. NaOH-activated carbon from
flamboyant (Delonix regia) pods: Optimization of preparation conditions
using central composite rotatable design. Chemical Engineering Journal 162:
43-50.
Zhu, J., Yang, J. & Deng, B. 2009.
Enhanced mercury ion adsorption by amine-modified activated carbon. Journal
of Hazardous Materials 166(2-3): 866-872.
*Pengarang untuk
surat-menyurat; email: m.dani.supardan@unsyiah.ac.id