Sains Malaysiana 47(7)(2018): 1511–1516

http://dx.doi.org/10.17576/jsm-2018-4707-19

 

Kesan Resonans Plasmon Aurum terhadap Prestasi Fotoelektrokimia Fotokatod Cu2O

(Plasmonic Resonance Effect of Aurum on Photoelectrochemical Performance of Cu2O Photocathode)

 

KIM HANG NG1, LORNA JEFFERY MINGGU1*, NURUL AKMAL JAAFAR1 & MOHAMMAD B. KASSIM2

 

1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 30 Jun 2017/Diterima: 19 Februari 2018

 

 

ABSTRAK

Dalam kajian ini, kesan lapisan Au di atas fotokatod kuprus oksida (Cu2O) terhadap tindak balas fotoelektrokimia telah diuji. Lapisan Cu2O dan Au ini telah disediakan di atas subtrak kaca stanum oksida terdop fluorin (FTO) dalam konfigurasi yang berlainan, melalui kaedah elektroendapan. Selepas itu, fotokatod ini dicirikan dengan mikroskopi elektron imbasan berpancaran medan (FESEM), spektroskopi ultra lembayung dan cahaya nampak (UV-Vis) dan analisis fotoelektrokimia. Daripada imej FESEM, lapisan Au telah berjaya diendapkan di atas substrak FTO dan permukaan Cu2O. Penyerapan plasmon Au pada julat cahaya nampak juga terbukti dan ia telah mempertingkatkan penggunaan cahaya nampak untuk tindak balas fotoelektrokimia. Oleh itu, prestasi fotoelektrokimia fotokatod Cu2O berplasmon telah meningkat secara ketara. Di bawah sinaran suria simulasi A.M 1.5, fotokatod Cu2O terapit Au telah menjanakan ketumpatan fotoarus yang tertinggi, iaitu ~4 kali ganda peningkatan berbanding prestasi fotokatod Cu2O tulen.

 

Kata kunci: Fotoelektrokimia; logam oksida; plasmon

 

ABSTRACT

In this work, the effect of Au layer on cuprous oxide (Cu2O) photocathode on photoelectrochemical reaction was studied. The Cu2O and Au layer were prepared on a fluorine-doped tin oxide (FTO) glass substrate in different configurations, via electrodeposition method. Then, the photocathodes were characterized by field-emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoelectrochemical analysis. From the FESEM images, the Au layer was successfully deposited onto the FTO substrate and the surface of Cu2O. The plasmonic absorption of Au at visible light region was proven and it improved the utilization of visible light for photoelectrochemical reaction. As a result, the photoelectrochemical performance of the plasmonized Cu2O photocathode improved significantly. Under simulated AM 1.5 solar illumination, the Au sandwiched Cu2O photocathode generated the highest photocurrent density, which is ~4 folds enhancement compared to that obtained by bare Cu2O photocathode.

 

Keywords: Metal oxide; photoelectrochemical; plasmonic

RUJUKAN

Baxter, J.B., Richter, C. & Schmuttenmaer, C.A. 2014. Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem 65(1): 423-447.

Choudhary, S., Upadhyay, S., Kumar, P., Singh, N., Satsangi, V.R., Shrivastav, R. & Dass, S. 2012. Nanostructured bilayered thin films in photoelectrochemical water splitting - A review. International Journal of Hydrogen Energy 37(24): 18713- 18730.

Duchene, J.S., Williams, B.P., Johnston-Peck, A.C., Qiu, J., Gomes, M., Amilhau, M., Bejleri, D., Weng, J., Su, D., Huo, F., Stach, E.A. & Wei, W.D. 2016. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes. Advanced Energy Materials 6(1): 1-10.

Gao, H., Zhang, P., Hu, J., Pan, J., Fan, J. & Shao, G. 2017. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation. Applied Surface Science 391(Part B): 211-217.

Grätzel, M. 2017. The rise of highly efficient and stable perovskite solar cells. Accounts of Chemical Research 50(3): 487-491.

Hong, J.W., Wi, D.H., Lee, S.U. & Han, S.W. 2016. Metal-semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. Journal of the American Chemical Society 138(48): 15766-15773.

Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M. & Xia, Y. 2006. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews 35(11): 1084-1094.

Hutchins, M.G., Abu-Alkhair, O., El-Nahass, M.M. & Abd El- Hady, K. 2006. Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films. Materials Chemistry and Physics 98(2-3): 401-405.

Jaafar, N.S.H., Minggu, L.J., Arifin, K. & Kassim, M.B. 2017. Natural dyes as TiO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews 78: 698-709.

Kalamaras, E., Dracopoulos, V., Sygellou, L. & Lianos, P. 2016. Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in the presence of ethanol. Chemical Engineering Journal 295: 288-294.

Kawawaki, T., Takahashi, Y. & Tatsuma, T. 2013. Enhancement of dye-sensitized photocurrents by gold nanoparticles: Effects of plasmon coupling. J. Phys. Chem. C. 117(11): 5901-5907.

Lee, Y.G., Wang, J.R., Chuang, M.J., Chen, D.W. & Hou, K.H. 2017. The effect of electrolyte temperature on the electrodeposition of cuprous oxide films. International Journal of Electrochemical Science 12: 507-516.

Leong, K.H., Liu, S.L., Sim, L.C., Saravanan, P., Jang, M. & Ibrahim, S. 2015. Surface reconstruction of titania with g-C3N4 and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis. Applied Surface Science 358(Part A): 370-376.

Lewis, N. 2016. Research opportunities to advance solar energy utilization. Science 351(6271): aad1920.

Li, J., Cushing, S.K., Bright, J., Meng, F., Senty, T.R., Zheng, P., Bristow, A.D. & Wu, N. 2013. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis 3(1): 47-51.

Liu, L., Ding, L., Liu, Y., An, W., Lin, S., Liang, Y. & Cui, W. 2016. Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures. Applied Surface Science 364: 505-515.

Mark-Lee, W.F., Ng, K.H., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2012. Determination of band energy levels for tungsten nitrosyldithiolene. Sains Malaysiana 41(4): 439-444.

Mi, Y., Wen, L., Xu, R., Wang, Z., Cao, D., Fang, Y. & Lei, Y. 2016. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials 6(1): 1-8.

Ng, K.H., Minggu, L.J., Jaafar, N.A. & Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes. Solar Energy Materials & Solar Cells 172: 361-367.

Ng, K.H., Minggu, L.J., Jumali, M.H.H. & Kassim, M.B. 2012. Fotoelektrod tungsten trioksida terdop nikel untuk tindak balas pembelahan air fotoelektrokimia. Sains Malaysiana 41(7): 893-899.

Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2018. A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52.

Pazos-Outón, L.M., Lee, J.M., Futscher, M.H., Kirch, A., Tabachnyk, M., Friend, R.H. & Ehrler, B. 2017. A silicon-singlet fission tandem solar cell exceeding 100% external quantum efficiency with high spectral stability. ACS Energy Letters 2(2): 476-480.

Pu, Y. & Zhang, J.Z. 2014. Mechanisms behind plasmonic enhancement of photocurrent in metal oxides. Austin Journal of Nanomedicine and Nanotechnology 2(5): 1-4.

Redecka, M., Rekas, M., Trenczek-Zajac, A. & Zakrzewska, K. 2008. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources 181(1): 46-55.

Sim, L.C., Leong, K.H., Ibrahim, S. & Saravanan, P. 2014. Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. Journal of Materials Chemistry A 2(15): 5315-5322.

Tang, Q. 2017. All-weather solar cells - A rising photovoltaic revolutionary. Chemistry - A European Journal 23(34): 8118-8127.

Verma, A., Srivastav, A., Banerjee, A., Sharma, D., Sharma, S., Singh, U.B., Satsangi, V.R., Shrivastav, R., Avasthi, D.K. & Dass, S. 2013. Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes. Journal of Power Sources 315: 152-160.

Wang, B., Li, R., Zhang, Z., Zhang, W., Yan, X., Wu, X., Cheng, G. & Zheng, R. 2017. Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. Journal of Materials Chemistry A 5(27): 14415-14421.

Wang, T., Jin, B., Jiao, Z., Lu, G., Ye, J. & Bi, Y. 2014. Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. Journal of Materials Chemistry A 2(37): 15553-15559.

Yang, J., Li, Z., Zhao, C., Wang, Y. & Liu, X. 2014. Facile synthesis of Ag-Cu2O composites with enhanced photocatalytic activity. Materials Research Bulletin 60: 530-536.

Ye, W., Long, R., Huang, H. & Xiong, Y. 2016. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 5: 1008-1021.

Yuan, G.Z., Hsia, C.F., Lin, Z.W., Chiang, C., Chiang, Y.W. & Huang, M.H. 2016. Highly facet-dependent photocatalytic properties of Cu2O crystals established through the formation of Au-decorated Cu2O heterostructures. Chemistry - A European Journal 22(35): 12548-12556.

Zhang, L., Herrmann, L.O. & Baumberg, J.J. 2015. Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting. Scientific Reports 5: 16660.

 

 

*Pengarang untuk surat-menyurat: email: lorna_jm@ukm.edu.my

 

 

 

 

sebelumnya