Sains Malaysiana 47(7)(2018): 1455–1464

http://dx.doi.org/10.17576/jsm-2018-4707-13

 

Integrated Palm Oil Mill Effluent Treatment and CO2 Sequestration by Microalgae

(Rawatan Bersepadu Efluen Kilang Kelapa Sawit dan Pemerangkapan CO2 oleh Mikroalga)

 

NUR ANIRA SYAFIQAH HAZMAN1, NAZLINA HAIZA MOHD YASIN2*, MOHD SOBRI TAKRIFF3,4, HASSIMI ABU HASAN1, KAMRUL FAKIR KAMARUDIN1 & NOOR IRMA NAZASHIDA MOHD HAKIMI5

 

1Chemical Engineering Programme, Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3UKM-YSD Chair on Sustainable Development, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4IDEA Center, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

5Sime Darby Research Sdn Bhd, R&D Centre - Carey Island, Lot 2664, Jalan Pulau Carey,

42960 Pulau Carey, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 14 September 2017/Diterima: 8 Mac 2018

 

 

ABSTRACT

Malaysian economy relies on palm oil industries as a driver for rural development. However, palm oil mill effluent (POME) that is generated from palm oil processing stages causes major environmental challenges. Before being released to the environment, POME treatment is crucial to comply with standard discharge limit. Microalgae have demonstrated excellent potential for phycoremediating POME and capturing CO2. In this study, local microalgae isolate such as Chlamydomonas sp. UKM 6 and Chlorella spp. UKM 8 were used for POME treatment in 21 days with different inoculum sizes (5%, 10% and 15%). In addition, an integrated treatment process was performed by taking the treated POME supernatant for cultivation of Chorella spp. UKM 2, Chorella sorokiniana UKM 3 and Chlorella vulgaris for CO2 sequestration study. Different CO2 concentrations (5%, 10% and 15%) were used and the experiments were carried out in 10 days under continuous illumination. The results showed that among two species involves in POME treatment, Chlamydomonas sp. UKM 6 showed a great potential to remove pollutant such as COD (56%), nitrogen (65%) and phosphorus (34%). The biomass after POME treatment and CO2 biofixation content high lipid (90 mg lipid/g biomass) which can be the potential source for biodiesel production. In CO2 sequestration study, C. sorokininana UKM 3 able to takes up to 15% CO2 with CO2 uptake rate of 273 mgL-1d-1. In this study, the integrated system of POME treatment and CO2 sequestration were feasible using microalgae.

 

Keywords: Chorella spp.; Chlamydomonas sp.; CO2 capture; effluent treatment; microalgae

 

ABSTRAK

Ekonomi Malaysia bergantung kepada industri kelapa sawit untuk pembangunan kawasan luar bandar. Walau bagaimanapun, efluen kilang kelapa sawit (POME) yang terhasil pada peringkat pemprosesan minyak kelapa sawit menyebabkan masalah besar kepada alam sekitar. Sebelum dilepaskan ke alam sekitar, rawatan POME sangat penting untuk mematuhi had pelepasan piawai yang telah ditetapkan. Mikroalga telah menunjukkan potensi yang amat baik bagi tujuan bioremediasi POME dan pemerangkapan CO2. Dalam kajian ini, pencilan mikroalga tempatan iaitu Chlamydomonas sp. UKM 6 and Chlorella spp. UKM 8 telah digunakan untuk merawat POME dalam jangka masa 21 hari menggunakan saiz enap cemar yang berbeza (5%, 10% dan 15%). Di samping itu, proses rawatan bersepadu dijalankan dengan mengambil supernatan POME yang telah dirawat untuk inokulasi Chorella spp. UKM 2, Chorella sorokiniana UKM 3 dan Chorella vulgaris bagi kajian pemerangkapan CO2. Kepekatan CO2 yang berlainan (5%, 10% dan 15%) telah digunakan dan uji kaji telah dijalankan selama 10 hari di bawah pencahayaan yang berterusan. Keputusan kajian menunjukkan bahawa, antara dua spesies yang digunakan untuk rawatan POME, Chlamydomonas sp. UKM 6 menunjukkan potensi yang besar untuk menurunkan kadar COD (56%), nitrogen (65%) dan fosforus (34%). Biojisim selepas rawatan POME dan pemerangkapan CO2 menunjukkan nilai lipid yang tinggi (90 mg lipid/g biomas) yang berpotensi menjadi sumber penghasilan biodiesel. Dalam kajian pemerangkapan karbon, C. sorokiniana UKM 3 boleh memerangkap sehingga 15% CO2 dengan kadar pemerangkapan CO2 sebanyak 273 mgL-1d-1. Justeru, proses integrasi antara rawatan POME dan pemerangkapan karbon boleh dijalankan menggunakan mikroalga..

 

Kata kunci: Chorella spp.; Chlamydomonas sp.; mikroalga; pemerangkapan CO2; rawatan efluen

RUJUKAN

Ahmad, A. & Krimly, M.Z. 2014. Palm oil mill effluent treatment process evaluation and fate of priority components in an open and closed digestion system. Current World Environment 9: 2.

Amin, I. 2014. Malaysian Palm Oil Industry. Malaysian Palm Oil Council (MPOC). http://www.mpoc.org.my/Malaysian_ Palm_Oil_Industry.aspx. Accessed on 31 January 2018.

Babu, A., Katam, K., Gundupalli, M.P. & Bhattacharyya, D. 2017. Nutrient removal from wastewater using microalgae: A kinetic evaluation and lipid analysis. Water Environment Research 90(6): 520-529.

Bligh, E.G. & Dyer, W.J. 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911-917.

Cardoso, L.A.C., Karp, S.G., Vendruscolo, F., Kanno, K.Y.F., Zoz, L.I.C. & Carvalho, J.C. 2017. Biotechnological production of carotenoids and their applications in food and pharmaceutical products. Carotenoids. InTech Open.

Demirbaş, A. 2008. Production of biodiesel from algae iils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31(2): 163-168.

Department of Environment. 1977. Environmental Quality (Prescribed Premises) (Crude Palm Oil) Regulations. Department of Environment. Second Schedule (Regulation 12(2) and (3)) Parameter Limits for Watercourse Discharge.

Ding, G.T., Yaakob, Z., Takriff, M.S., Salihon, J. & Abd Rahaman, M.S. 2016. Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). International Journal of Hydrogen Energy 41(8): 4888-4895.

Ebrahimian, A., Kariminia, H.R. & Vosoughi, M. 2014. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy 71: 502-508.

El-Kassas, H.Y. & Mohamed, L.A. 2014. Bioremediation of the textile waste effluent by Chlorella vulgaris. The Egyptian Journal of Aquatic Research 40(3): 301-308.

Environmental Quality (Clean Air) Regulations. 1978 PU(A) 280/1978.

Holdmann, C., Schmid-Staiger, U., Hornstein, H. & Hirth, T. 2018. Keeping the light energy constant - Cultivation of Chlorella sorokiniana at different specific light availabilities and different photoperiods. Algal Research 29: 61-70.

Kamarudin, K.F., Yaakob, Z., Rajkumar, R., Takriff, M.S. & Tasirin, S.M. 2013. Bioremediation of palm oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris. Advanced Science Letters 19(10): 2914-2918.

Khalid, A.A.H., Yaakob, Z., Abdullah, S.R.S. & Takriff, M.S. 2018. Growth improvement and metabolic profiling of native and commercial Chlorella sorokiniana strains acclimatized in recycled agricultural wastewater. Bioresource Technology 247: 930-939.

Lam, M.K. & Lee, K.T. 2013. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control 14: 169-176.

Mohd Yasin, N.H., Maeda, T., Hu, A., Yu, C.P. & Wood, T.K. 2015. CO2 sequestration by methanogens in activated sludge for methane production. Applied Energy 142: 426-434.

Nayak, M., Suh, W.I., Lee, B. & Chang, Y.K. 2017. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Conversion and Management 154: 45-52.

Nur, M.M.A., Setyoningrum, T.M. & Budiaman, I.G.S. 2018. Potency of Botryococcus braunii cultivated on palm oil mill effluent (POME) wastewater as the source of biofuel. Environmental Engineering Research 22(4): 1-8.

Rao, C.S., Sathish, T., Brahamaiah, P., Kumar, T.P. & Prakasham, R.S. 2009. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. Journal of Chemical Technology and Biotechnology 84(2): 302-307.

Sforza, E., Gris, B., Silva, C.E.D.F., Morosinotto, T. & Bertucco, A. 2014. Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Engineering Transactions 38: 211-216.

Singh, P., Singh, R.K. & Kumar, D. 2018. Microalgae: Potential agents for carbon dioxide mitigation. In Microbes for Climate Resilient Agriculture, edited by Kashyap, P.L., Srivastava, A.K., Tiwari, S.P. & Kumar, S. New York: John Wiley & Sons. p. 64.

Singh, R.P., Ibrahim, M.H., Esa, N. & Iliyana, M.S. 2010. Composting of waste from palm oil mill: A sustainable waste management practice. Reviews in Environmental Science and Bio/Technology 9(4): 331-344.

Suali, E. & Sarbatly, R. 2012. Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews 16(6): 4316-4342.

Tang, D., Han, W., Li, P., Miao, X. & Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102(3): 3071-3076.

Watada, A.E., Norris, K.H., Worthington, J.T. & Massie, D.R. 1976. Estimation of chlorophyll and carotenoid contents of whole tomato by light absorbance technique. Journal of Food Science 41(2): 329-332.

Wu, T.Y., Mohammad, A.W., Jahim, J.M. & Anuar, N. 2010. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 91(7): 1467-1490.

Zainal, A., Yaakob, Z., Takriff, M.S., Renganathan, R. & Ghani, J.A. 2012. Phycoremediation in anaerobically digested palm oil mill effluent using Cyanobacterium, Spirulina platensis. Journal of Biobased Materials and Bioenergy 6: 704-709.

Zheng, H., Gao, Z., Yin, F., Ji, X. & Huang, H. 2012. Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Bioresource Technology 126: 24-30.

 

 

*Pengarang untuk surat-menyurat; email: nazlinayasin@ukm.edu.my

 

 

 

 

sebelumnya