Sains Malaysiana 47(6)(2018): 1319–1326

http://dx.doi.org/10.17576/jsm-2018-4706-29

 

A New Discordancy Test on a Regression for Cylindrical Data

(Ujian Ketakselanjaran Terbaru ke atas Regresi untuk Data Silinder)

 

NURUL HIDAYAH SADIKON, ADRIANA IRAWATI NUR IBRAHIM*, IBRAHIM MOHAMED & DHARINI PATHMANATHAN

 

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Diserahkan: 12 Mei 2017/Diterima: 6 Februari 2018

 

ABSTRACT

A cylindrical data set consists of circular and linear variables. We focus on developing an outlier detection procedure for cylindrical regression model proposed by Johnson and Wehrly (1978) based on the k-nearest neighbour approach. The procedure is applied based on the residuals where the distance between two residuals is measured by the Euclidean distance. This procedure can be used to detect single or multiple outliers. Cut-off points of the test statistic are generated and its performance is then evaluated via simulation. For illustration, we apply the test on the wind data set obtained from the Malaysian Meteorological Department.

 

Keywords: Circular-linear; cylindrical data; k-nearest neighbour's distance; outlier

 

ABSTRAK

Data silinder adalah data yang mengandungi pemboleh ubah bulatan dan linear. Kami memberi tumpuan kepada pembangunan prosedur pengecaman nilai tersisih untuk model regresi silinder yang dicadangkan oleh Johnson dan Wehrly (1978) dengan menggunakan pendekatan jiran k-terdekat. Prosedur tersebut adalah berdasarkan nilai-nilai reja dengan jarak di antara dua reja diukur menggunakan jarak Euclidean. Prosedur ini boleh digunakan untuk mengesan nilai tersisih tunggal atau berbilang. Titik potongan untuk statistik ujian dijana dan prestasi bagi ujian tersebut dikaji secara simulasi. Untuk ilustrasi, kami menggunakan set data angin yang diperoleh daripada Jabatan Meteorologi Malaysia.

 

Kata kunci: Bulatan-linear; data silinder; jarak jiran k-terdekat; nilai tersisih

RUJUKAN

Abuzaid, A., Mohamed, I., Hussin, A.G. & Rambli, A. 2011. Covratio statistic for simple circular regression model. Chiang Mai Journal of Science 38(3): 321-330.

Abuzaid, A., Hussin, A. & Mohamed, I. 2013. Detection of outliers in simple circular regression models using mean circular error statistic. Journal of Statistical Computation and Simulation 83(2): 269-277.

Barrett, B.E. & Ling, R.F. 1992. General classes of influence measures for multivariate regression. Journal of the American Statistical Association 87(417): 184-191.

Barnett, V. & Lewis, T. 1978. Outliers in Statistical Data. 2nd ed. New York: John Wiley & Sons.

Cook, R.D. 1977. Detection of influential observations in linear regression. Econometrics 19(1): 15-18.

David, H.A. 1981. Order Statistic. New York: Wiley.

Hadi, A.S. & Simonoff, J.S. 1993. Procedures for the identification of multiple outliers in linear models. Journal of the American Statistical Association 88(424): 1264-1272.

Ibrahim, S., Rambli, A., Hussin, A. & Mohamed, I. 2013. Outlier detection in a circular regression model using covratio statistic. Communications in Statistics - Simulation and Computation 42(10): 2272-2280.

Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics. World Scientific.

Johnson, R.A. & Wehrly, T.E. 1978. Some angular-linear distributions and related regression models. J. Am. Stat. Assoc. 73(363): 602-606.

Qin, X., Jiang, S.Z. & Xiao, D.Y. 2011. A nonparametric circular-linear multivariate regression model with a rule-of-thumb bandwidth selector. Computers and Mathematics with Applications 62(8): 3048-3055.

Rambli, A., Ali, A., Mohamed, I. & Hussin, A.G. 2016. Procedure for detecting outliers in circular regression model. PLoS ONE 11(4): e0153074.

SenGupta, A. & Ugwuowo, F. 2006. Asymmetric circular-linear multivariate regression models with applications to environmental data. Environmental and Ecological Statistics 13(3): 299-309.

Srikantan, K.S. 1961. Testing for the single outlier in a regression models. Sankhya Series A 23(3): 251-260.

Srivastava, M.S. & Rosen, D. 1998. Outliers in multivariate regression models. Journal of Multivariate Analysis 65(2): 195-208.

 

*Pengarang untuk surat-menyurat; email: adrianaibrahim@um.edu.my

 

 

 

sebelumnya