Sains Malaysiana 47(6)(2018): 1319–1326
http://dx.doi.org/10.17576/jsm-2018-4706-29
A New Discordancy Test on a Regression
for Cylindrical Data
(Ujian Ketakselanjaran Terbaru ke atas Regresi
untuk Data Silinder)
NURUL HIDAYAH SADIKON, ADRIANA IRAWATI NUR IBRAHIM*, IBRAHIM MOHAMED
& DHARINI PATHMANATHAN
Institute of
Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
Diserahkan: 12 Mei 2017/Diterima: 6 Februari 2018
ABSTRACT
A cylindrical data set consists of
circular and linear variables. We focus on developing an outlier
detection procedure for cylindrical regression model proposed by
Johnson and Wehrly (1978) based on the k-nearest neighbour approach.
The procedure is applied based on the residuals where the distance
between two residuals is measured by the Euclidean distance. This
procedure can be used to detect single or multiple outliers. Cut-off
points of the test statistic are generated and its performance is
then evaluated via simulation. For illustration, we apply the test
on the wind data set obtained from the Malaysian Meteorological
Department.
Keywords: Circular-linear; cylindrical
data; k-nearest neighbour's distance; outlier
ABSTRAK
Data silinder
adalah data yang mengandungi pemboleh ubah bulatan dan linear. Kami memberi tumpuan kepada pembangunan prosedur pengecaman nilai
tersisih untuk model regresi silinder yang dicadangkan oleh Johnson
dan Wehrly (1978) dengan menggunakan pendekatan jiran k-terdekat.
Prosedur tersebut adalah berdasarkan nilai-nilai reja dengan jarak
di antara dua reja diukur menggunakan jarak Euclidean. Prosedur ini boleh digunakan untuk mengesan nilai tersisih tunggal
atau berbilang. Titik potongan untuk
statistik ujian dijana dan prestasi bagi ujian tersebut dikaji secara
simulasi. Untuk ilustrasi, kami menggunakan set data angin
yang diperoleh daripada Jabatan Meteorologi Malaysia.
Kata
kunci: Bulatan-linear; data silinder; jarak jiran k-terdekat; nilai
tersisih
RUJUKAN
Abuzaid,
A., Mohamed, I., Hussin, A.G. & Rambli, A. 2011. Covratio
statistic for simple circular regression model. Chiang Mai Journal of
Science 38(3): 321-330.
Abuzaid,
A., Hussin, A. & Mohamed, I. 2013. Detection of outliers in simple circular
regression models using mean circular error statistic. Journal of
Statistical Computation and Simulation 83(2): 269-277.
Barrett,
B.E. & Ling, R.F. 1992. General classes of influence
measures for multivariate regression. Journal of the American
Statistical Association 87(417): 184-191.
Barnett,
V. & Lewis, T. 1978. Outliers in Statistical Data. 2nd ed. New York: John Wiley & Sons.
Cook, R.D. 1977. Detection of influential observations in linear regression. Econometrics 19(1): 15-18.
David, H.A. 1981. Order
Statistic. New York: Wiley.
Hadi, A.S. &
Simonoff, J.S. 1993. Procedures for the identification of
multiple outliers in linear models. Journal of the American
Statistical Association 88(424): 1264-1272.
Ibrahim,
S., Rambli, A., Hussin, A. & Mohamed, I. 2013. Outlier
detection in a circular regression model using covratio statistic. Communications in Statistics - Simulation and Computation 42(10):
2272-2280.
Jammalamadaka, S.R. &
SenGupta, A. 2001. Topics in Circular Statistics.
World Scientific.
Johnson, R.A. & Wehrly,
T.E. 1978. Some angular-linear distributions and related regression models. J.
Am. Stat. Assoc. 73(363): 602-606.
Qin,
X., Jiang, S.Z. & Xiao, D.Y. 2011. A nonparametric
circular-linear multivariate regression model with a rule-of-thumb bandwidth selector. Computers and Mathematics with Applications 62(8): 3048-3055.
Rambli,
A., Ali, A., Mohamed, I. & Hussin, A.G. 2016. Procedure
for detecting outliers in circular regression model. PLoS ONE 11(4):
e0153074.
SenGupta,
A. & Ugwuowo, F. 2006. Asymmetric circular-linear multivariate regression
models with applications to environmental data. Environmental
and Ecological Statistics 13(3): 299-309.
Srikantan, K.S. 1961.
Testing for the single outlier in a regression models. Sankhya Series A 23(3):
251-260.
Srivastava, M.S. &
Rosen, D. 1998. Outliers in multivariate regression models. Journal of Multivariate Analysis 65(2): 195-208.
*Pengarang
untuk surat-menyurat; email: adrianaibrahim@um.edu.my
|