Sains Malaysiana 47(4)(2018):
839-851
http://dx.doi.org/10.17576/jsm-2018-4704-24
Physico-Mechanical,
Chemical Composition, Thermal Degradation and Crystallinity of Oil
Palm Empty Fruit Bunch, Kenaf and Polypropylene
Fibres: A Comparatives Study
(Fiziko-Mekanikal, Komposisi Kimia, Degradasi Haba dan Habluran Serabut Tandan Kosong Kelapa Sawit, Kenaf dan Polipropilena:
Kajian
Perbandingan)
NOOR INTAN
SAFFINAZ ANUAR1, SARANI
ZAKARIA*1, HATIKA KACO1,
CHIA CHIN HUA1, WANG
CHUNHONG2 & HUSNA SHAZWANI ABDULLAH1
1Bioresources and
Biorefinery Laboratory, Faculty of Science
and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Wang Chunhong School of Textile, Tianjin
Polytechnic University 300384, Xiqing,
China
Diserahkan: 13 Mei 2017/Diterima: 1 November 2017
ABSTRACT
The physico-mechanical and chemical properties of enzyme retting
kenaf and shredded empty fruit bunch of
oil palm fibres (EFB) were analyzed by
chemical extraction, microscopic, spectroscopic, thermal
and X-ray diffraction method. Polypropylene
(PP), a petroleum based
fibre, was also
included to compare the properties of synthetic fibre with
natural fibres.
Chemical extraction analysis showed that cellulose was the major
component in both kenaf and EFB fibres which are
54% and 41.34%, respectively. Silica content of EFB was 5.29%
higher than kenaf that was 2.21%. The
result of thermogravimetric analysis showed
that kenaf has higher thermal
decomposition rate compared
to EFB fibre. However, the residue
for EFB fibre was higher than
kenaf due to higher content
in inorganic materials. The residual content
of PP fibre
was only 1.13% which was lower than the natural fibre.
The diameter of EFB fibre bundle was 341.7
µm that was three times higher than kenaf.
Microscopy study demonstrated that EFB surface was rough, porous
and embedded with silica while
kenaf showed smooth
surface with small
pith. Higher
porosity in EFB was due to the lower fibre density
that was 1.5 kg/cm3 compared to kenaf that was 1.62 kg/cm3. Kenaf has illustrated significant higher tensile strength
(426.4 MPa) than EFB (150 MPa) and this result is in parallel
to the pattern of the crystalline value for both
fibres, 65% and 50.58%,
respectively.
Keyword: EFB statistic; kenaf
statistic; polypropylene; tensile strength; thermal analysis
ABSTRAK
Sifat fiziko-mekanikal dan kimia kenaf yang diretan melalui enzim dan serabut
tandan kosong
buah kelapa sawit
(EFB) yang dipecahkan telah
dianalisis melalui
kaedah pengekstrakan kimia, mikroskopik, spektroskopik, haba dan pembelauan sinar-X. Kajian ini juga termasuk serabut berasaskan petroleum, polipropilena (PP) untuk membandingkan sifat serabut asli dan
tiruan.
Analisis pengekstrakan kimia membuktikan selulosa merupakan komponen utama dalam kedua-dua
serabut kenaf
dan EFB iaitu masing-masing
54% dan 41.34%. Kandungan silika
EFB adalah 5.29% lebih
tinggi daripada kenaf itu 2.21%. Keputusan themogravimetrik menunjukkan kenaf mempunyai kadar
degradasi haba
yang lebih tinggi berbanding
dengan EFB. Walau bagaimanapun, sisa EFB adalah lebih tinggi daripada
kenaf kerana
kandungan bahan-bahan bukan organik yang lebih tinggi. Kandungan sisa serat PP hanya
1.13% iaitu lebih
rendah daripada serabut semula jadi. Diameter berkas serabut EFB adalah 341.7 µm iaitu tiga kali lebih tinggi daripada serabut kenaf. Kajian mikroskopoik menunjukkan
bahawa permukaan
EFB adalah kasar, poros dan terkandung dengan silika manakala kenaf menunjukkan permukaan yang
licin dengan saiz empulur yang kecil. Keliangan yang
lebih tinggi dalam EFB adalah berkaitan dengan ketumpatan serat yang lebih rendah iaitu 1.5 kg/cm3
berbanding
kenaf iaitu 1.62 kg/cm3.
Kenaf
menunjukkan kekuatan tegangan yang lebih tinggi yang
ketara (426.4 MPa) daripada EFB (150 MPa) yang selari dengan corak
nilai kristal
untuk kedua-dua
serat, masing-masing 65% dan 50.58%.
Kata kunci: Analisis termal; kekuatan tegangan; polipropilena; statistik EFB; statistik kenaf
REFERENCES
Abdul Hamid,
H., Yusoff, M.H., Ab-Shukor, N.A.,
Zainal, B. &
Musa, M.H. 2009. Effects of different fertilizer application level on growth
and physiology of Hibiscus
cannabinus
L. (kenaf) planted on bris
soil. Journal of Agricultural Science 1: 120-131.
Abdul Khalil, H.P.S., Siti Alwani, M., Ridzuan, R., Kamarudin, H. &
Khairul,
A. 2008. Chemical composition, morphological characteristics,
and cell wall structure of Malaysian oil palm
fibres.
Polymer-Plastics Technology and Engineering 47(3):
273-280.
Abdul Khalil, H.P.S., Yusra, A.F.I., Bhat, A.H. &
Jawaid, M. 2010. Cell wall ultrastructure, anatomy, lignin distribution, and chemical
composition of Malaysian cultivated kenaf
fibre. Industrial Crops
and Products 31(1): 113-121.
Abdullah, N. &
Sulaiman, F.
2013. The
Oil Palm Wastes in Malaysia. In Biomass
Now - Sustainable Growth and Use, edited
by Miodrag Darko Matovic. https://www.intechopen.
com/books/biomass-now-sustainable-growth-and-use/the-oil-palm-wastes-in-malaysia. Accessed on 13 February 2017.
Ahmad, H.R.A.
2012. Oil palm biomass residue in Malaysia: Availability and
sustainability. International
Journal of Biomass & Renewables 2(1): 13-18.
Agensi Inovasi Malaysia.
2012. National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm
Oil Industry. http://feldaglobal.com/site-content/National%20 Biomass%20Strategy%20Nov%2020 11%20FINAL.pdf.
Accessed on 25 February 2017.
Akil, H.M., Omar, M.F., Mazuki, A.M.,
Safiee,
S., Ishak, Z.A.M. & Abu Bakar, A. 2011. Kenaf fibre reinforced composites: A review. Materials
and Design 32: 4107-4121.
Alves Fidelis, M.E., Pereira, T.V.C., Gomes, O.D.F.M., De Andrade Silva, F. & Toledo
Filho, R.D. 2013. The effect of fibre morphology on the tensile strength
of natural fibres. Journal of Materials Research
and Technology 2(2):
149-157.
Asumani, O.M.L.,
Reid, R.G. & Paskaramoorthy, R. 2012. The effects of alkali–silane treatment on the tensile
and flexural properties of
short fibre
non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied
Science and Manufacturing 43:
1431-1440.
Bakar, A.A., Hassan,
A. & Mohd Yusof, A.F. 2006. The effect of oil extraction of the oil
palm empty fruit bunch on the processability,
impact, and flexural properties of pvc-u
composites. International
Journal of Polymeric Materials 55(9): 627-641.
Basiron, Y.
&
Weng, C.K.
2004. The oil palm and
its sustainability. Journal of Oil Palm Research 16(1): 1-10.
Beg, M.D. & Pickering, K.L. 2007. The
effects of residual lignin content on wood fibre reinforced polypropylene composites.
Advance Materials Research
29-30: 323-326.
Bledzki, A.K. & Gassan,
J. 1999. Composites reinforced
with cellulose based fibres. Progress in Polymer Science 24: 221-274.
Cheng, Z., Fujiwara, S., Ohtani, Y. & Sameshima,
K. 2000. A new method of sample preparation for
kenaf bast fiber length analysis with automated fibre length analyzer. Holzforschung 54: 213-218.
Das, D., Pradhan,
A.K., Chattopadhyay, R. & Singh, S.N. 2012. Composite nonwovens. Textile Progress 44: 1-84.
Dicker, M.P.M.,
Duckworth, P.F., Baker,
A.B., Francois, G., Hazzard, M.K. & Weaver,
P.M. 2014. Green composites: A review
of material attributes and complementary applications. Composites Part A: Applied
Science and Manufacturing
56: 280-289.
Edem, D.O. 2002. Palm oil: Biochemical, physiological, nutritional,
hematological, and toxicological aspects: A review. Plant Foods for Human Nutrition 57: 319-341.
Farkhan Purwanto, Y.A., Hambali,
E. & Hermawan, W.
2016. Selecting part
of natural
fibre
efb which has
best mechanical strength through tensile test
analysis for
composite reinforced
material. Engineering and
Applied Sciences 11(17): 10522-10528.
Gan, S.Y., Zakaria, S., Chia, C.H., Kaco, H. &
Padzil, F.N.M. 2014. Synthesis
of kenaf cellulose carbamate using microwave
irradiation for preparation of cellulose membrane. Carbohydrate Polymers 106: 160-165.
Han, S.O., Karevan,
M., Bhuiyan, M.A., Park, J.H. & Kalaitzidou, K. 2012.
Effect of exfoliated graphite nanoplatelets
on the mechanical and viscoelastic properties of poly(lactic
acid) biocomposites reinforced with kenaf fibers. Journal
of Materials Science 47(8): 3535-3543.
Hao, A. 2013. Mechanical and thermal properties of kenaf/polypropylene nonwoven composites. PhD Dissertation. Univesity of Texas
at Austin (Unpublished).
Husain, Z., Zainac, Z. &
Abdullah, Z. 2002. Briquetting of palm fibre and shell from the processing of palm nuts
to palm
oil. Biomass and Bioenergy
22: 505-509.
Ibrahim, Z., Aziz,
A.A. & Ramli, R. 2015. Effect of treatment on the oil content and surface
morphology of oil palm (Elaeis guineensis) empty fruit
bunches (EFB) fibres. Wood Research 60(1): 157-166.
Jonoobi, M., Khazaeian,
A., Tahir, P.M., Azry, S.S. & Oksman,
K. 2011. Characteristics
of cellulose nanofibres isolated from rubberwood and empty fruit
bunches of oil palm using chemo-mechanical process. Cellulose 18(4): 1085-1095.
John, M.J. & Thomas, S. 2007. Biofibres and biocomposites.
Carbohydrate Polymers 71:
343-364.
Kalebek, N.A. & Baarslan,
O. 2016. Fiber Selection for the Production of Nonwovens,
Non-Woven Fabrics.
https:// www.intechopen.com/books/non-woven-fabrics/fiber-
selection-for-the-production-of-nonwovens. Accessed
on 13 February 2017.
Kuroda, K.I., Nakagawa-Izumi, A., Mazumder, B.B., Ohtani, Y. & Sameshima, K. 2005. Evaluation of chemical composition of the core
and bast lignins of variety chinpi-3
kenaf
(Hibiscus cannabinus l.) by pyrolysis–gas chromatography/mass spectrometry and cupric
oxide oxidation. Industrial Crops and Products 22(3): 223-232.
Lee, T., Zubir, Z.A., Jamil, F.M., Matsumoto, A. & Yeoh, F.Y. 2014.
Combustion and pyrolysis of acticated
carbon fibre from oil palm empty fruit bunch fibre
assisted through chemical activation with acid treatment. Journal of Analytical and Applied Pyrolysis 110: 408-418.
Lu, F., Karlen, S.D., Regner, M., Kim, H., Ralph, S.A., Sun, R.C., Kuroda,
K.I., Augustin, M.A., Mawson,
R.,
Sabarez, H.,
Singh, T., Jimenez-Monteon, G.,
Zakaria, S., Hill, S., Harris, P.J., Boerjan, W., Wilkerson, C.G., Mansfield, S.D. & Ralph, J. 2015. Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Research 8(3): 934-952.
MPIC. 2016. Commodity dataset kenaf
2016. https://www.
kppk.gov.my/mpic/index.php/en/statistic-on-commodity/ dataset/721. Accessed on 12 February 2017.
Mohd, H.A.B., Arifin,
A., Nasima, J., Hazandy,
A.H. & Khalil, A. 2014. Journey of kenaf in Malaysia:
A review. Scientific
Research and Essays 9(11):
458-470.
MPOB. 2016. Statistics Production. http://bepi.mpob.gov.my/ index.php/my/statistics/production.html.
Accessed 12 February
2017.
Mukherjee, I.
& Sovacool, B.K. 2014. Palm oil-based biofuels and sustainability in Southeast
Asia: A review
of Indonesia,
Malaysia and Thailand. Renewable and
Sustainable Energy
Reviews 37: 1-12.
Tahir, P.M., Ahmed, A.B., Saifulazry, S.O.A. &
Ahmed, Z. 2011. Retting process of some bast plant fibres and its effect on
fibre
quality: A review. BioResources 6(4): 5260-5281.
Parikh, D.V.,
Thibodeaux, D.P. & Condon, B. 2007.
X-ray crystallinity of bleached and crosslinked cottons. Textile Research Journal 77(8): 612-616.
Pickering, K.L.,
Aruan Efendy,
M.G. & Le, T.M. 2016.
A review of recent development in natural fibre
composites and their mechanical performance. Composites Part A 83: 98-112.
Salmén, L. & Bergström, E. 2009. Cellulose structural arrangement in
relation to
spectral changes
in tensile loading FTIR. Cellulose 16: 975-982.
Segal, L., Creely,
J.J., Martin, A.E. & Conrad, C.M. 1959. An
empirical method for estimating the degree of crystallinity of native
cellulose using the x-ray diffractometer. Textile
Research Journal 29(10): 786-794.
Sheil,
D., Casson, A.,
Meijaard, E., Van Noordwjik, M., Gaskell,
J., Sunderland-Groves, J., Wertz,
K. & Kanninen, M. 2009. The Impacts and Opportunities
of Oil Palm in Southeast Asia: What Do We Know and What Do We Need
to Know? Occasional paper no.51 CIFOR,
Bogor, Indonesia.
Shuit,
S.H., Tan, K.T., Lee,
K.T. & Kamaruddin, A.H.
2009. Oil
palm biomass as a sustainable energy source: A Malaysian
case study. Energy 34(9): 1225-1235.
Shubhra, Q.T., Alam, A. & Quaiyyum, M. 2011 Mechanical properties of polypropylene composites: A review. Journal
of Thermoplastic Composite Materials 26(3): 362-391.
Sulaiman, S.A. & Taha, F.F.F. 2014. Drying of oil palm fronds using
concentrated solar thermal
power. Applied Mechanics and Materials 699: 449-454.
Yang,
H.,
Yan, R., Chen, H., Lee,
D.H. & Zheng, C. 2007. Characteristics
of hemicellulose, cellulose and lignin
pyrolysis. Fuel 86: 1781-1788.
Yusoff, S. 2006.
Renewable energy
from palm oil - innovation on effective utilization of waste. Journal of Cleaner Production
14(1): 87-93.
Yu, H. & Yu, C. 2007. Study on microbe retting of kenaf
fibre. Enzyme
and Microbial Technology 40: 1806-1809.
Wise, L.E. &
Murphy, M. 1946. A chlorite holocellulose, its fractionation and bearing on summative
wood analysis and studies on the hemicellulose. Paper Trade Journal 122(2): 35-43.
Zakaria, S., Roslan, R., Amran, U.A.,
Chia, C.H. & Bakaruddin, S.B.
2014. Characterization
of residue from efb and kenaf
core fibres in the liquefaction process.
Sains Malaysiana 43(3):
429-435.
Zhang, T. 2003. Improvement of kenaf yarn for apparel applications.
Master Thesis. Lousiana State University
(Unpublished).
*Pengarang untuk
surat-menyurat; email: szakaria@ukm.edu.my
|