Sains Malaysiana 47(4)(2018): 789-795
http://dx.doi.org/10.17576/jsm-2018-4704-18
Kebergantungan Suhu dengan Penggunaan Tiub Kuarza Relau
ke atas Sel Suria Dwi-Muka
(Temperature Dependences by using Furnace Quartz Tube
on Bifacial Solar Cell)
NURUL
AQIDAH MOHD SININ, MOHD ADIB IBRAHIM*, SUHAILA SEPEAI, MOHD ASRI
MAT TERIDI, NORASIKIN AHMAD LUDIN, KAMARUZZAMAN SOPIAN & SALEEM
H. ZAIDI
Institut Penyelidikan Tenaga Suria (SERI), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 30 Jun 2017/Diterima: 9 November 2017
ABSTRAK
Sel suria
digunakan untuk menawan
foton untuk menjana
tenaga. Walau
bagaimanapun, penambahbaikan sel diperlukan untuk meningkatkan jumlah penangkapan foton
dan juga untuk
meningkatkan kecekapan sel.
Ini melibatkan keseluruhan proses pembuatan sel, dengan proses penyepuhlindapan
adalah salah satu daripada langkah penting yang perlu dioptimumkan.
Percetakan perlogaman menggunakan dwi pembakaran merupakan kaedah yang
paling biasa digunakan dalam penghasilan sel suria kristal
secara komersial. Aluminium (Al) digunakan pada bahagian belakang
sel sebagai medan permukaan belakang
dan penyambung belakang
manakala perak (Ag)
dicetak pada
bahagian hadapan
sebagai grid pemungut. Proses
dwi pembakaran bagi
komponen ini adalah penting
dalam menentukan kecekapan sel. Oleh itu, dalam kajian ini, rawatan pembakaran
telah dikaji dengan menggunakan relau tiub kuarza (QTF) dengan perubahan
suhu pembakaran (700, 750, 800 and 850°C)
sebagai satu percubaan
untuk mendapatkan kecekapan
yang tinggi serta meningkatkan kesan pemirauan persimpangan Ag. Apabila suhu
meningkat, sifat
elektrik sel suria dwi-muka
juga turut meningkat.
Kebergantungan suhu menunjukkan rintangan pirau yang tinggi disebabkan
oleh proses penyejukan yang pantas selepas proses pembakaran dan
seterusnya membawa kepada faktor isi dan kecekapan sel yang
tinggi.
Kata
kunci: Kebergantungan suhu; medan permukaan belakang; pemirauan
persimpangan; sel suria dwi-muka; tiub kuarza relau
ABSTRACT
Solar cells
are used to capture photons
to generate energy. However, cell enhancements are needed to increase the amount of photon
capture and also to increase cell efficiency. This involves the
entire cell manufacturing process, where
the annealing process is one of the
most important
steps needs to be optimized. Metallization printing using
dual combustion is the most commonly
used method in the production of commercial crystalline solar cells. Aluminum
(Al) is used on the back
of the
cell as a back
surface and rear connector while silver (Ag)
is printed
on the front as a collector
grid. The dual combustion process
for this component
is important in determining the efficiency of the cells.
Therefore, in this study, combustion treatment has been studied by using quartz
tubes furnace
(QTF) with the change of combustion
temperature (700, 750, 800 and 850°C) as an attempt to obtain high
efficiency and increase the shunting effect of Ag junction. As temperatures rise,
the electric
properties of the bifacial solar
cells also
increase. Temperature dependence shows high shunt resistances due
to rapid cooling process after the combustion process and thus leading
to fill factor and high cell
efficiency.
Keywords: Bifacial solar cells; furnace
quartz tube; rear surface plane; shunting junction; temperature
dependence
RUJUKAN
Ballif, C., Huljić, D.M., Willeke, G. & Hessler-Wyser, A. 2003. Silver thick-film
contacts on highly doped n-type silicon emitters: Structural and electronic properties of the interface. Applied Physics Letters 82(12):
1878-1880.
Erath, D., Filipović, A., Retzlaff, M., Goetz,
A.K., Clement, F., Biro, D. & Preu, R. 2010. Advanced
screen printing technique for high definition front side metallization
of crystalline silicon solar cells. Solar
Energy Materials and Solar Cells 94(1): 57-61.
Grupp, G., Huljik,
D.M., Preu, R.,
Willeke, G. & Luther,
J. 2005. Peak firing
temperature dependence of
the microstructure of Ag thick-film contacts on silicon solar
cells - A detailed AFM study
of the interface. Proc. 20th
European Photovoltaic Solar Energy Conference. pp.
1379-1382.
Hilali, M., Rohatgi, A. & To, B.
2004. A review and
understanding of screen-printed contacts
and selective-emitter formation. In 14th Workshop on Crystalline
Silicon Solar Cells and Modules
1617: 1-40.
Jeong, J.W.,
Rohatgi, A., Yelundur,
V., Ebong,
A., Rosenblum, M.D. & Kalejs, J.P. 2001. Enhanced silicon solar cell performance by rapid
thermal
firing of screen-printed metals. IEEE Transactions on Electron Devices
48(12): 2836-2841.
Kabir, M.I., Ibrahim, Z.,
Sopian, K. & Amin,
N. 2010.
Effect of structural variations in amorphous silicon
based single and multi-junction solar cells from
numerical analysis. Solar Energy Materials and
Solar Cells 94(9): 1542-1545.
Kwon, T.Y.,
Kim, S.C.,
Kyung, D.Y., Jung,
W.W., Kim, S.Y.,
Lee, Y.W., Kim,
Y.K., Jang, K.S., Jung, S.W.,
Shin, M.C. & Yi, J.S. 2010. The effect of firing temperature
profiles for the high efficiency of crystalline Si solar cells.
Solar Energy Materials and Solar Cells 94(5):
823-829.
Richter, P.J., Bottari, F.J.
& Wong, D.C.
2011.
Rapid metallization paste firing of crystalline silicon solar cells. 37th IEEE Photovoltaic Specialists Conference (PVSC). pp.
2198-2201.
Sepeai, S., Sulaiman,
M.Y., Sopian, K. &
Zaidi, S.H.
2012. Surface passivation studies on n+pp+ bifacial
solar cell. International Journal of Photoenergy 2012: Article ID. 278764.
Sepeai, S., Sulaiman, M.Y., Zaidi, S.H. & Sopian,
K. 2011. Microstructural studies on fire-through front contact metallization
of Si solar cells. 2011 IEEE
Regional Symposium on Micro and Nano Electronics. pp. 364-367.
Vinod, P.N. 2008. Formation of fire-through
silver metal contacts on the porous
silicon surface for silicon solar
cells. Conference Record
of the IEEE Photovoltaic Specialists Conference. pp.
1-5.
*Pengarang
untuk surat-menyurat; email: mdadib@ukm.edu.my
|