Sains
Malaysiana 47(4)(2018): 731-739
http://dx.doi.org/10.17576/jsm-2018-4704-11
Effect of Tea Polyphenols on α-Amylase Activity in Starch Hydrolysis
(Kesan Polifenol Teh terhadap Aktiviti
α-Amilase pada Hidrolisis Kanji)
NURUL NADIAH
BINTI ISMAIL, UTHUMPORN UTRA*, CHENG LAI HOONG & AZHAR BIN MAT
ESA
Food Technology Division, School of Industrial Technology,
Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
Diserahkan:
13 Jun 2017/Diterima: 26 Oktober
2017
ABSTRACT
Tea leaves (Camellia sinensis)
contain bioactive compounds that can help prevent certain diseases.
In this study, the inhibitory effect of polyphenolic
components of different types of tea leaves (green, oolong and black)
extracted using different solvents (ethanol, methanol and water)
on α-amylase activity of human
saliva were
investigated in
vitro. Total phenolic content
(TPC), total flavonoid content (TFC), ferric reducing/antioxidant
power and inhibition of free radical scavenging
activity by 1,1-diphenyl-2-picrylhydrazyl of the extracts
were measured. Content
of gallic acid,
caffeine and four
catechins also were quantified by high performance liquid chromatography.
The ethanol extracts had the highest TPC (124.34-231.23 mg gallic
acid equivalents (GAE)/g sample), followed by the methanol extracts
(124.28-209.76 mg GAE/g sample)
and the water extracts (66.89-136.51 mg GAE/g sample).
All three solvent
extractions of green
tea leaves contained the highest TPC, TFC and
antioxidant activity, followed by oolong and black tea leaves. Green
tea leaves contained higher amounts
of catechins than
oolong and
black tea leaves. All
four catechins were detected in green and oolong tea leaves but only gallocatechin gallate was found
in black
tea leaves.
Next, the effect
of tea leaves extracts on starch
hydrolysis by α-amylase enzyme
from human saliva at 37°C was
studied. The starches were hydrolyzed with 0.01% enzyme for
240 min and the extent of hydrolysis was determined based on the
dextrose equivalent value. The extent of starch
hydrolysis by the tea
leaves was
as follows:
green tea >
oolong tea
> black
tea. The low
degree of hydrolysis for black tea was due to its strong inhibitory
effect on α-amylase activity. Thus, green, oolong and black
tea leaves inhibit activity of α-amylase to different degrees
due to their differing compositions and structures of phenolic compounds.
Keywords: α-amylase activity; black tea; green tea;
hydrolyzing starch; oolong tea; phenolic content
ABSTRAK
Daun teh (Camellia sinensis)
mempunyai sebatian bioaktif sebagai pencegahan penyakit tertentu.
Penyelidikan ini mengkaji tentang kesan
perencatan enzim α-amylase oleh komponen polifenol daripada pelbagai jenis
daun teh (hijau, oolong dan hitam) dengan
menggunakan kaedah pengekstrakan (etanol, metanol dan air) yang
berlainan secara
in vitro. Dalam kajian ini, penentuan jumlah kandungan fenolik (TPC), jumlah kandungan
flavonoid (TFC), pengurangan kuasa ferum antioksidan (FRAP) dan
perencatan aktiviti pembasmian radikal bebas oleh 1,1-difenil-2-picrilhidrazil
(DPPH) dijalankan. Kandungan asid gallik, kafein dan empat jenis
catechin telah dianalisis dan diukur dengan menggunakan alat
analisis kromatografi cecair
prestasi tinggi (HPLC).
Pengekstrakan etanol menghasilkan jumlah kandungan fenolik tertinggi (124.34-231.23 mg GAE/g
sampel), diikuti dengan
pengekstrakan metanol (124.28-209.76 mg GAE/g sampel)
dan pengekstrakan menggunakan air
(66.89-136.51 mg
GAE/g sampel).
Ketiga-tiga jenis larutan
pengekstrakan menunjukkan
daun teh hijau mempunyai kandungan TPC, TFC dan
antioksidan tertinggi diikuti oleh daun
teh oolong dan
daun teh
hitam. Daun teh hijau mengandungi jumlah
katekin lebih tinggi
daripada daun teh oolong dan
daun teh hitam. Keempat-empat katekin dijumpai terkandung
dalam daun teh hijau dan teh oolong, tetapi hanya gallokatecin gallat
sahaja dijumpai dalam teh hitam. Selain itu, kesan penambahan ekstrak
daun teh pada hidrolisis kanji dengan menggunakan enzim α-amilase
daripada air liur manusia pada suhu 37°C telah dikaji. Kanji telah
dihidrolisiskan dengan menggunakan enzim berkepekatan 0.01% selama
240 min dan kadar hidrolisis ditentukan oleh nilai bersamaan dektrosa.
Keputusan hidrolisis
kanji ditunjukkan dalam urutan: teh hijau> teh oolong> teh hitam. Tahap hidrolisis terendah untuk teh hitam
terbukti daripada perencatan tertinggi teh hitam
pada aktiviti
enzim α-amilase. Ini membuktikan bahawa
penambahan daun teh yang berbeza menunjukkan tahap perencatan
aktiviti enzim α-amilase yang berbeza kerana komposisi dan
struktur sebatian fenolik yang berbeza pada setiap jenis daun
teh.
Kata kunci: Aktiviti α-amylase; teh hitam; teh hijau;
hidrolisis kanji; teh oolong; kandungan fenolik
RUJUKAN
Ahmed, F. &
Urooj, A. 2010.
In vitro studies on the hypoglycemic potential of Ficus racemosa stem bark. Journal of the Science of Food and Agriculture
90(3): 397-401.
Alma, M.H., Mavi, A.,
Yildirim, A.,
Digrak, M. &
Hirata, T. 2003.
Screening chemical composition and in
vitro antioxidant and antimicrobial activities of the essential
oils from Origanum syriacum l. growing in turkey. Biological and Pharmaceutical Bulletin 26: 1725-1729.
Alothman, M., Bhat, R. & Karim, A.A. 2009. Antioxidant capacity and phenolic content of selected
tropical fruits from Malaysia, extracted with different solvent. Food Chemistry
115: 785-788.
Apostolidis, E. & Lee, C.M.
2010. In vitro potential
of Ascophyllum nodosum phenolic antioxidant-mediated
alpha–glucosidase and alpha-amylase. J. Food Sci. 75: 97-102.
Bailey, C.J. 2001. New approaches
to the pharmacotherapy of diabetes.
3rd ed.
In Text
Book of Diabetes, edited
by Pickup, J.C. &
William, G.
UK: Blackwell Science Ltd. 2: 73.1-73.2.
Balentine, D.A. 1997. Manufacturing and chemistry of tea. In Phenolic
Compounds in Food and their Effects
on Health, Antioxidants and Cancer Prevention, edited by Ho, C.T., Lee, C.Y. &
Huang, M.T. Washington: American Chemical Society.
Benzie, I.F.F. & Szeto, Y.T. 1999.
Total antioxidant capacity
of teas by the ferric
reducing/antioxidant power
assay.
Journal of Agricultural and Food Chemistry
47: 633-636.
Bhoo, P.N., Peeters, P., van Gils,
C., Beulens, J.W.J., van der Graaf, Y. & Bueno-de-Mesquita,
B. 2010. Coffee and tea intake and risk of breast cancer. Breast Cancer Research and Treatment 121: 461-467.
Chan, E.W.C., Lim, Y.Y., Chong, K.L., Tan, J.B.L. &
Wong, S.K.
2010. Antioxidant properties of tropical and temperate
herbal teas. Journal of Food Composition and Analysis 23: 185-189.
Chen, N., Bezzina, R., Hinch, E., Lewandowski, P.A., Cameron- Smith, D., Mathai, M.L., Jois, M.,
Sinclair, A.J., Begg, D.P.,
Wark, J.D., Weisinger, H.S. & Weisinger,
R.S. 2009. Green tea, black tea, and epigallocatechin modify
body composition, improve glucose tolerance, and
differentially alter metabolic gene expression in rats fed
a high-fat diet. Nutr.
Res. 29(11): 784-793.
Demiray, S., Pintado, M.E. & Castro, P.M.L. 2009. Evaluation of phenolic profiles and antioxidant activities
of Turkish medical plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta
roots. World Academy of Science, Engineering and
Technology 3: 06-24.
Eklund, P.C., Langvik, O.K., Warna, J.P., Salmi, T.O., Willfor,
S.M. & Sjoholm, R.E. 2005. Chemical studies on antioxidant mechanisms and free rradical
scavenging properties
of lignans.
Organic
and Bimolecular Chemistry 21:
3336-3347.
Gordon, J., Mcdougall, Faina, S., Patricia, D., Pauline, S.,
Alison, B.
& Derek,
S. 2005. Different polyphenolic components of soft fruits
inhibit α-amylase and α-lucosidase. J. Agric. Food Chem. 53: 2760-2766.
Hara, Y. & Honda, M. 1990. The inhibition of α-amylase in tea polyphenols. Agric. Biol. Chem. 54: 1939-1945.
Higdon, J.V. & Frei, B. 2003. Tea
catechins and polyphenols: Health
effects, metabolism and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89-143.
Horzic, D., Komes, D., Belscak,
A., Ganic, K.K., Ivekovic, D. & Karlovic, D. 2009. The composition
of polyphenols and methylxanthines
in teas and herbal infusions. Food
Chem. 115: 441-448.
Huafu, W., Gordon,
J.P. & Keith, H. 2000. Tea flavonoids: Their functions, utilisation and analysis. Trends in Food Science &
Technology 11: 152-160.
Jeszka-Skowron, M., Zgola-Grzes´kowiak, A. & Grzes´kowiak,
T. 2015. Analytical methods applied for the characterization and
the determination of bioactive compounds in coffee. Eur. Food
Res. Technol. 240: 19-31.
Jianbo, X., Guoyin, K., Xiaoling
N., Fan, Y. & Xiaoqing,
C. 2011. Interaction of natural polyphenols with α-amylase in vitro: Molecular property–affinity relationship aspect. Mol. BioSyst. 7: 1883-1890.
Khokhar, S. &
Magnusdottir, S.G.M. 2002. Total
phenol, catechin, and caffeine contents
of teas commonly
consumed in the United
Kingdom. J. Agric. Food
Chem. 50:
565-570.
Kim, Y., Goodner, K.L., Park, J.D.,
Choi, J. & Talcott, S.T. 2011. Changes in antioxidant phytocemicals
and volatile composition of Camellia
sinensis by oxidation during tea fermentation. Food Chemistry 129: 1331-1342.
Kwon, Y.I., Apostolidis, E. & Shetty, K.
2008. Inhibitory potential of wine and
tea against alpha-amylase and alpha-glucosidase
for management of hyperglycemia linked
to type 2 diabetes. J. Food Biochem.
32: 15-31.
Lee, M.J., Maliakal,
P., Chen, L.,
Meng, X., Bondoc, F.Y., Prabhu,
S., Lambert, G., Mohr, S. & Yang, C.S. 2002. Pharmacokinetics
of tea catechins after ingestion of green tea
and (–)-epigallocatechin-3-gallate by
humans: Formation
of different metabolites and individual variability. Cancer Epidemiol., Biomarkers Prev. 10: 1025-1032.
Liang, H., Liang, Y., Dong, J., Lu, J., Xu, H. & Wang, H. 2007. Decaffeination of fresh green
tea leaf (Camellia sinensis)
by hot water treatment. Food
Chemistry 101: 1451-1456.
Lilian, U.T. 1994. Potential health
benefits and problems associated with antinutrients in foods. Food Research International 93: 963-969.
Lin, Y., Tsai, Y., Tsay,
J. & Lin, J. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves.
J. Agric. Food Chem. 51: 1864-1873.
Liu, X., Zho, M.,
Wang,
J., Yang, B. & Jiang,
Y. 2008. Antioxidant
activity of methanolic extract of emblica fruit
(Phyllanthus emblica
L.) from six regions in China. Journal
of Food Composition and Analysis 21(3):
219-228.
Mcdougall, G.J. & Stewart, D.
2005. The inhibitory effects of berry polyphenols on digestive enzymes.
Biofactors 23: 189-195.
Naczk, M. & Shahidi, F. 2006. Phenolics in cereals, fruits and
vegetables: Occurance, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41: 1523-1542.
Naldi, M., Fiori, J., Gotti, R., Pe’ riat, A., Veuthey, J.L., Guillarme, D. & Andrisano, V. 2014.
UHPLC determination
of catechins for the quality control of green tea. Journal of Pharmaceutical and Biomedical Analysis 88: 307-314.
Nwuha, V., Nakajima, M., Tong, J.
& Ichikawa, S. 1999. Solubility study of green tea extracts
in pure solvents and edible oils. J.
Food Eng. 40: 161-165.
Pan, X., Niu, G. &
Liu, H. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing 42(2): 129-133
Pinelo, M., DelFabbro, P., Marzocco, L., Nunez, M.J. &
Vicoli, M.C. 2005. Optimization
of continuous phenol extraction from vitis vinifera byproducts.
Food Chem. 92: 109-117.
Rhabasa-Lhoret, R. & Chiasson,
J.L. 2004. α-Glucosidase inhibitors, In International Textbook of Diabetes mellitus, vol. 1, 3rd ed, edited
by Defronzo, R.A., Ferrannini, E., Keen, H. & Zimmet, P. U.K.
John Wiley & Sons Ltd. pp. 901-914.
Rohn, S., Rawel, H.M. & Kroll,
J. 2002. Inhibitory effects of plant phenols on the activity of
selected enzymes. Journal
of Agricultural Food Chemistry 50: 3566-3571.
Rusak, G., Komes, D., Likic´, S., Horzˇic´, D. &
Kovacˇ, M. 2008. Phenolic content and antioxidative capacity of green and white tea extracts depending
on extraction conditions and
the solvent used. Food
Chemistry 110: 852-858.
Saito, S., Okamoto, Y. & Kawabata,
J. 2004. Effect
of alcoholic solvents
on antiradical abilities of protocatechuic acid and its alkyl esters. Bioscience Biotechnology and Biochemistry 68:
1221-1227.
Sanchez-Moreno, C., Larrauri, J.A.
& Saura-Calixto, F. 1998.
A procedure to
measure the antiradical
efficiency of polyphenols. Journal of the Science
of Food and
Agriculture 76: 270-276.
Siddhuraju,
P. &
Becker, K. 2003. Antioxidant properties of
various extracts of total phenolic constituents from three
different agroclimatic origins of
drumstick tree
(Moringa oleifera lam.)
leaves. J. Agric. Food Chem.
51: 2144-2155.
Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M.
& Knez, Z. 2005. Phenols, proanthocyanidins, flavones and flavonols
in some plant materials and their antioxidant activities. Journal of Food Chemistry 89: 191-198.
Sroka, Z. & Cisowski,
W. 2003. Hydrogen peroxide
scavenging, antioxidant
and antiradical activity of some phenolic acids. Food
and Chemical Toxicology 41:
753-758.
Szymczycha-Madeja, A., Welna, M.
& Pohl, P. 2015. Determination of essential and non-essential
elements in green and black teas by FAAS and ICP OES simplified–
multivariate classification of different tea products. Microchemical
Journal 121: 122-129.
Timell, T.E., Glaudemans, C.P.J.
& Currie, A.L. 1956. Spectrophotometric methods for determination
of sugars. Anal. Chem. 28:
1916-1920.
Tresserra-Rimbau,
A., Rimm, E.B., Medina-Remon, A., Martinez-Gonzalez,
M.A., de la Torre, R., Corella, D.,
Salas-Salvado, J., Gomez-Gracia, E., Lapetra, J., Aros, F.,
Fiol, M., Ros, E., Serra-Majem, L., Pinto, X., Saez, G.T., Basora, J., Sorli, J.V., Martinez, J. A., Vinyoles, E., Ruiz
Gutierrez, V., Estruch, R. & Lamuela-Raventos, R.M. 2014. Inverse association between habitual polyphenolintake and incidence of cardiovascular events in the PREDIMED study.
Nutr.
Metab. Cardiovasc. Dis. 24(6): 639-647.
Turkmen, N., Sari, F. &
Velioglu, Y.S. 2006.
Effects of extraction solvents on concentration and
antioxidant activity of black
and black mate tea polyphenols determined by ferrous tartrate and
Folin-Ciocaltue methods. Food
Chemistry 99: 835-841.
Uchenna, J.U., Selena,
A., Adam, K., James, T.L. &
Edward, J.K. 2010. White and green
teas (Camellia sinensis var. sinensis): Variation in phenolic, methylxanthine, and antioxidant profiles. Journal of Food Science 75: 66-78.
Vrhovsek, U., Rigo, A., Tonon, D. & Mattivi, F. 2004.
Quantitation of polyphenols in different apple varieties Journal
of Agricultural and Food Chemistry 52: 6532-6538.
Yen, G.C. & Chen, H.Y. 1995.
Antioxidant activity of various tea extracts in relation to their
antimutagenicity. J. Agric.
Food Chem. 43: 27-32.
Zhang, J. & Kashket, S. 1997.
Inhibition of salivary amylase by black and green teas and their
effects on the intra-oral hydrolysis of starch. Caries
Res. 32: 233-238.
Zhishen, J., Mengcheng, T. & Jianming, T. 1999. The determination
of flavonoid content in mulberry and their scavenging effects on
superoxide radicals. Food
Chem. 64: 555-559.
Zimmermann, B.F. & Gleichenhagen, M. 2011. The effect
of ascorbic acid, citric acid and low pH on the extraction of green
tea: How to get most out of it. Food
Chemistry 124: 1543-1548.
*Pengarang untuk surat-menyurat;
email: sapina@usm.my
|