Sains Malaysiana 47(4)(2018): 691-698
http://dx.doi.org/10.17576/jsm-2018-4704-06
Proliferation and Osteoblast Differentiation
Mice Dental Pulp Stem Cells between Enzyme Digestion and Outgrowth
Method
(Proliferasi
dan Pembezaan Osteoblas Sel Stem Pulpa Gigi Mencit antara Kaedah
Pencernaan
Enzim
dan Eksplan)
FARINAWATI
YAZID1*, NUR ATMALIYA LUCHMAN1, ROHAYA MEGAT
ABDUL WAHAB1, SHAHRUL HISHAM ZAINAL ARIFFIN2
& SAHIDAN SENAFI2
1Faculty of Dentistry,
Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala
Lumpur, Federal Territory, Malaysia
2School of Bioscience
and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan:
26 Julai 2017/Diterima: 6 November
2017
ABSTRACT
The isolation method
for dental pulp stem cells (DPSCs) is still unclear to obtain a
conducive environment for DPSCs to proliferate. Enzymatic digestion and
outgrowth method
are two commonly used
methods for
DPSCs isolation but are not
well characterized in mice DPSCs. This study aimed to compare these
isolation methods and differentiation potential of mice DPSCs into
bone cells. Dental pulp was extracted from mice’s
incisors and subjected to isolation either by collagenase
1A or culture of pulp tissue in complete alpha-Modified Eagle Medium
(αMEM). Both cells isolated were cultured
until passage
4 and subjected to in vitro proliferation and
differentiation analysis. Both cells exhibited fibroblast- liked morphology, but
cells isolated
by enzyme digestion proliferate faster compare
to outgrowth method.
After 21 days of osteoblast differentiation, DPSCs
isolated from enzyme digestion method showed alkaline phosphatase
(ALP) activity slightly different as compared to outgrowth method.
In conclusion, there is a significant difference between the cells
isolated from
enzyme digestion compare to outgrowth method with regard to proliferation and osteoblast differentiation. Thus, it is preferable
to isolate by enzyme digestion as it is faster and consistent compared
to outgrowth method.
Keywords: Adherent cells; alkaline phosphatase; in vitro; mesenchymal
stem cells
ABSTRAK
Kaedah pemencilan bagi sel stem
pulpa gigi
(DPSCs) masih
kurang jelas terutamanya bagi mendapatkan persekitaran yang kondusif bagi DPSCs
berproliferasi. Kaedah pencernaan enzim dan eksplan
merupakan dua kaedah
yang biasa digunakan untuk memencilkan DPSCs namun
kurang dicirikan pada DPSCs mencit. Kajian ini bertujuan untuk membandingkan
kaedah pemencilan dan potensi perbezaan DPSCs mencit kepada sel
tulang. Pulpa gigi diekstrak daripada gigi kacip mencit
dan pemencilan sel dilakukan sama ada menggunakan kolagenase 1A atau
pengkulturan tisu pulpa pada medium
lengkap alpha-modified eagle medium (αMEM). Kedua-dua sel yang dipencilkan dikulturkan sehingga pasaj
4 dan analisis proliferasi dan pembezaan
secara in vitro dilakukan. Kedua-dua sel menunjukkan morfologi fibroblas namun
sel yang diasingkan melalui pencernaan enzim
berproliferasi lebih cepat berbanding dengan kaedah eksplan. Selepas
21 hari pembezaan kepada sel
osteoblas, DPSCs
yang dipencilkan melalui
kaedah pencernaan enzim
menunjukkan aktiviti alkali fosfatase (ALP) sedikit berbeza
berbanding kaedah eksplan. Kesimpulannya, terdapat perbezaan yang signifikan daripada sel yang dipencilkan melalui
kaedah percernaan enzim
berbanding eksplan
terutamanya daripada segi proliferasi dan pembezaan osteoblas. Oleh itu, adalah
lebih baik untuk memencilkan sel melalui kaedah pencernaan enzim
kerana ia adalah lebih cepat dan konsisten berbanding dengan kaedah
eksplan.
Kata kunci: Alkali fosfatase; in vitro; sel melekat;
sel stem mesenkima
RUJUKAN
Akmal, M.N., Zarina, Z.I.,
Rohaya, M.,
Sahidan, S.,
Zaidah, Z. &
Hisham, Z.S. 2014. Isolation and characterization of dental
pulp stem cells from murine
incisors. Journal of Biological
Sciences 14(4): 327.
Bakopoulou, A.,
Leyhausen, G.,
Volk,
J., Tsiftsoglou, A., Garefis, P., Koidis, P. &
Geurtsen, W. 2011.
Assessment of the
impact of
two different isolation methods on the osteo/odontogenic
differentiation potential of human dental
stem cells
derived from deciduous teeth. Calcified
Tissue International 88(2): 130-141.
Barbara, Z., Eriberto, B., Giulia,
B., Letizia, F., Chiara,
G., Ferrarese, N., Stefano,
S. & Edoardo,
S. 2011. Dental
pulp stem cells and tissue engineering strategies for clinical
application on odontoiatric field Ed.: INTECH
Open Access Publisher.
Beck, G.R., Sullivan, E.C., Moran, E. &
Zerler, B. 1998. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. Journal of Cellular Biochemistry 68(2):
269-280.
Birmingham, E., Niebur, G., McHugh,
P., Shaw, G., Barry, F.P. &
McNamara, L.M. 2012. Osteogenic differentiation of mesenchymal stem
cells is regulated by osteocyte
and osteoblast cells in a simplified bone
niche. Eur.
Cell Mater.
23: 13-27.
de Souza, L.M., Bittar,
J.D., da Silva,
I.C.R., de Toledo,
O.A., de Macedo Brígido,
M. & Fonseca,
M.J.P. 2015. Comparative isolation
protocols and characterization of stem cells from human primary
and permanent teeth
pulp. Brazilian Journal of Oral Sciences
9(4): 427-433.
Djouad, F., Jackson,
W.M., Bobick, B.E., Janjanin,
S., Song, Y., Huang,
G. & Tuan, R.S. 2010. Activin A
expression regulates multipotency
of mesenchymal progenitor cells. Stem
Cell Res. Ther. 1(2): 11.
Dominici, M., Le Blanc, K., Mueller,
I., Slaper-Cortenbach, I., Marini,
F., Krause, D., Deans,
R., Keating, A.,
Prockop, D.
& Horwitz, E. 2006. Minimal criteria
for defining multipotent mesenchymal stromal cells: The
International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317.
Ellerström, C., Hyllner, J. &
Strehl, R. 2010. Single cell enzymatic dissociation of human embryonic
stem cells: A straightforward, robust, and standardized culture
method. Human Embryonic Stem Cell Protocols 584:
121-134.
Golub, E.E. & Boesze-Battaglia,
K. 2007. The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics 18(5):
444-448.
Gronthos, S., Brahim, J.,
Li, W., Fisher,
L., Cherman, N.,
Boyde, A., DenBesten, P.,
Robey, P.G. & Shi, S. 2002. Stem cell properties of human
dental
pulp stem cells. Journal
of Dental Research 81(8):
531-535.
Hilkens, P., Gervois,
P., Fanton, Y., Vanormelingen, J.,
Martens, W.,
Struys, T., Politis, C., Lambrichts, I. & Bronckaers, A. 2013. Effect of isolation
methodology on stem cell properties and multilineage differentiation
potential of human dental pulp stem cells. Cell
and Tissue Research 353(1): 65-78.
Huang, G.T.J., Sonoyama, W., Chen,
J. & Park, S.H. 2006. In
vitro characterization of human dental pulp cells: Various isolation
methods and culturing environments. Cell
and Tissue Research 324(2): 225-236.
Huang, W., Carlsen, B., Rudkin,
G., Berry, M., Ishida, K., Yamaguchi, D.T. & Miller, T.A. 2004.
Osteopontin is a negative regulator of proliferation and differentiation
in MC3T3-E1 pre-osteoblastic cells. Bone
34(5): 799-808.
Kermani, S., Megat Abdul Wahab, R., Zarina Zainol Abidin, I., Zainal
Ariffin, Z., Senafi, S. & Hisham Zainal Ariffin, S. 2014. Differentiation
capacity of mouse dental pulp stem cells into osteoblasts and
osteoclasts. Cell Journal (Yakhteh)
16(1): 31-42.
Kruger, N.J. 2009. The
Bradford method
for protein quantitation. The Protein Protocols Handbook, edited by Walter, J.M. New Jersey: Humana Press. pp. 17-24.
Lopez-Cazaux,
S., Bluteau, G., Magne, D., Lieubeau, B., Guicheux,
J. & Alliot-Licht, B. 2006. Culture medium modulates the behaviour of
human dental
pulp-derived cells: technical note. Eur. Cell Mater. 11: 35-42.
Nadig, R.R. 2009. Stem cell therapy-hype or hope? A review.Journal
of Conservative Dentistry 12(4): 131-138.
Nakashima, M. 1991. Establishment of primary cultures
of pulp cells from
bovine permanent incisors. Archives
of Oral Biology 36(9): 655-663.
Nourbakhsh, N., Talebi,
A., Mousavi, B.,
Nadali, F., Torabinejad,
M., Karbalaie, K. & Baharvand, H. 2008. Isolation of
mesenchymal stem cells from dental pulp of exfoliated human deciduous
teeth. Cell J. 10(2): 101-108.
Raouf, A. & Seth, A. 2002. Discovery
of osteoblast-associated genes using cDNA microarrays. Bone 30(3): 463-471.
Schnerch, A., Cerdan, C. & Bhatia,
M. 2010. Distinguishing between
mouse and
human pluripotent stem cell regulation: The best laid plans of mice
and men. Stem Cells 28(3):
419-430.
Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli,
S.,Brahim, J., Young, M.,
Robey, P.G.,Wang, C.Y. & Shi, S. 2004. Investigation of multipotent
postnatal stem cells from human periodontal ligament. The Lancet 364(9429): 149-155.
Shi, S., Bartold, P., Miura,
M., Seo, B., Robey,
P. & Gronthos,
S. 2005. The efficacy
of mesenchymal stem
cells to regenerate
and repair dental structures. Orthodontics
& Craniofacial Research 8(3):
191-199.
Sudo, H., Kodama, H.A.,
Amagai, Y., Yamamoto,
S. & Kasai,
S. 1983. In vitro differentiation and calcification in a new
clonal osteogenic cell line derived from newborn mouse calvaria. The Journal of
Cell Biology 96(1): 191-198.
Thomas, C.H., Collier, J.H., Sfeir,
C.S. & Healy, K.E. 2002. Engineering gene expression and protein
synthesis by modulation of nuclear shape. Proceedings
of the National Academy of Sciences 99(4): 1972-1977.
Yildirim, S. 2013. Dental pulp is a connective tissue. In
Dental Pulp Stem Cells.
New York: Springer. pp. 17-24.
*Pengarang untuk
surat-menyurat; email: drfarinawati@ukm.edu.my
|