Sains Malaysiana 47(12)(2018): 2985–2992
http://dx.doi.org/10.17576/jsm-2018-4712-07
Reconstruction of Curcuma aeruginosa Secondary
Metabolite Biosynthetic Pathway using Omics Data
(Pembinaan Semula Tapak Jalan Biosintetik
Metabolit Sekunder Curcuma aeruginosa Menggunakan Data Omiks)
NURUL-SYAFIKA MOHAMAD-FAUZI1, RABIATUL-ADAWIAH ZAINAL-ABIDIN2, MOHD WAZNUL ADLY ZAIDAN3, SANIMAH SIMOH3, ALIZAH ZAINAL3 & ZETI-AZURA MOHAMED-HUSSEIN1,2*
1Centre for Frontier
Sciences, Faculty of Science and Technology, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre for
Bioinformatics Research, Institute of Systems Biology (INBIOSIS),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
3Institut Penyelidikan
dan Kemajuan Pertanian Malaysia (MARDI), 43300 Serdang, Selangor
Selangor Darul Ehsan, Malaysia
Diserahkan: 5 September
2018/Diterima: 19 September 2018
ABSTRACT
Curcuma aeruginosa or temu hitam
is herbaceous plant with high therapeutic values in its rhizome
that is widely used in traditional medicine. However, molecular
studies on the secondary metabolite biosynthetic pathway of C.
aeruginosa is still limited. Hence, the aim of this study was
to explore and reconstruct the secondary metabolite biosynthetic
pathway of C. aeruginosa rhizome by integrating the metabolite
profiling and transcriptomic data. A total of 81 metabolites
were identified in the rhizome of C. aeruginosa; amongst
others are curzerene and β-Cubebene which are potent antioxidants.
A total of 28,225 unigene were obtained from transcriptomic sequencing
of C. aeruginosa rhizome and analysed to identify potential
genes associated with the biosynthesis of its metabolites. Of
these, 43 unigenes were identified and mapped onto five sub-pathways;
i.e. carotenoid biosynthetic pathway, diterpenoid biosynthetic
pathway, monoterpenoid biosynthetic pathway, terpenoid and steroid
biosynthetic pathway, and sesquiterpenoid and triterpenoid biosynthetic
pathway. This study demonstrated a systematic bioinformatic approach
to reconstruct a metabolic pathway in the rhizome of C. aeruginosa
using bioinformatic approach.
Keywords: Data integration;
metabolic pathway; metabolomics; pathway reconstruction; transcriptomic
ABSTRAK
Curcuma aeruginosa atau temu hitam
merupakan sejenis tumbuhan herba yang mempunyai nilai terapeutik
tinggi pada bahagian rizomnya dan telah digunakan secara meluas
dalam perubatan tradisi. Namun begitu, masih banyak yang belum
diketahui tentang penghasilan metabolit sekunder di dalam C.
aeruginosa. Kajian ini dijalankan untuk membina semula tapak
jalan biosintesis C. aeruginosa dengan menggunakan data
pemprofilan metabolit sekunder dan transkriptomik. Sebanyak 81 metabolit telah dikenal
pasti di dalam rizom seperti curzerene dan β-Cubebene yang
berfungsi sebagai anti-oksidan. Sejumlah 28,225 unigen
yang terhasil daripada penjujukan transkriptomik rizom C. aeruginosa telah dianalisis
untuk mencari dan mengenal pasti sebarang gen yang terlibat di
dalam penghasilan metabolit di dalam rizom C. aeruginosa.
Terdapat 43 unigen telah dikenal pasti terlibat di dalam lima
tapak jalan biosintetik utama iaitu biosintesis karotenoid, biosintesis
diterpenoid, biosintesis monoterpenoid, biosintesis terpenoid
dan steroid serta biosintesis sesquiterpenoid dan triterpenoid.
Kajian ini juga memfokuskan kepada strategi
pembinaan semula tapak jalan biosintetik yang terlibat dalam rizom
C. aeruginosa dengan menggunakan pendekatan bioinformatik.
Kata
kunci: Integrasi data; metabolomik; pembinaan semula tapak jalan; tapak jalan
metabolik; transkriptomik
RUJUKAN
Abe, I.,
Rohmer, M. & Prestwich, G.D. 1993. Enzymatic cyclization
of squalene and oxidosqualene to sterols and triterpenes. Chemical
Reviews 93(6): 2189-2206.
Bateman, A.,
Martin, M.J., O’Donovan, C., Magrane, M., Apweiler, R., Alpi, E., Antunes, R.,
Arganiska, J., Bely, B., Bingley, M., Bonilla, C., Britto, R., Bursteinas, B.,
Chavali, G., Cibrian-Uhalte, E., Da Silva, A., De Giorgi, M., Dogan, T.,
Fazzini, F., Gane, P., Castro, L.G., Garmiri, P., Hatton- Ellis, E., Hieta, R.,
Huntley, R., Legge, D., Liu, W., Luo, J., Macdougall, A., Mutowo, P.,
Nightingale, A., Orchard, S., Pichler, K., Poggioli, D., Pundir, S., Pureza,
L., Qi, G., Rosanoff, S., Saidi, R., Sawford, T., Shypitsyna, A., Turner, E.,
Volynkin, V., Wardell, T., Watkins, X., Zellner, H., Cowley, A., Figueira, L.,
Li, W., McWilliam, H., Lopez, R., Xenarios, I., Bougueleret, L., Bridge, A.,
Poux, S., Redaschi, N., Aimo, L., Argoud-Puy, G., Auchincloss, A., Axelsen, K.,
Bansal, P., Baratin, D., Blatter, M.C., Boeckmann, B., Bolleman, J., Boutet,
E., Breuza, L., Casal-Casas, C., De Castro, E., Coudert, E., Cuche, B., Doche,
M., Dornevil, D., Duvaud, S., Estreicher, A., Famiglietti, L., Feuermann, M.,
Gasteiger, E., Gehant, S., Gerritsen, V., Gos, A., Gruaz-Gumowski, N., Hinz,
U., Hulo, C., Jungo, F., Keller, G., Lara, V., Lemercier, P., Lieberherr, D.,
Lombardot, T., Martin, X., Masson, P., Morgat, A., Neto, T., Nouspikel, N.,
Paesano, S., Pedruzzi, I., Pilbout, S., Pozzato, M., Pruess, M., Rivoire, C.,
Roechert, B., Schneider, M., Sigrist, C., Sonesson, K., Staehli, S., Stutz, A.,
Sundaram, S., Tognolli, M., Verbregue, L., Veuthey, A.L., Wu, C.H., Arighi,
C.N., Arminski, L., Chen, C., Chen, Y., Garavelli, J.S., Huang, H., Laiho, K.,
McGarvey, P., Natale, D.A., Suzek, B.E., Vinayaka, C.R., Wang, Q., Wang, Y.,
Yeh, L.S., Yerramalla, M.S. & Zhang, J. 2015. UniProt: A hub for protein
information. Nucleic Acids Research 43: 204-212.
Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R.,
Strait, E. & Huala, E. 2015. The arabidopsis information
resource: Making and mining the “gold standard” annotated reference plant
genome. Genesis 53(8): 474-485.
Cameron, S.I., Smith, R.F. & Kierstead, K.E. 2005. Linking
medicinal/nutraceutical products research with commercialization. Pharmaceutical
Biology 43(5): 425-433.
Cavill, R., Jennen, D., Kleinjans, J. & Briedé, J.J. 2015. Transcriptomic and metabolomic data integration. Briefings
in Bioinformatics 17(5): 891-901.
Chatr-Aryamontri,
A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N.K., O’Donnell, L.,
Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B.J., Dolinski,
K. & Tyers, M. 2017. The BioGRID interaction database: 2017 update. Nucleic
Acids Research 45: 369-379.
Filippis,
L.F.D. 2016. Plant secondary metabolites: From molecular biology to health
products. In Plant-Environment Interaction: Responses and Approaches to
Mitigate Stress, edited by Azooz, M.M. & Ahmad, P. New Jersey: Wiley-
Blackwell. pp. 263-300.
Francke, C., Siezen, R.J. & Teusink, B. 2005. Reconstructing the metabolic network of a bacterium from its genome. Trends
in Microbiology 13(11): 550-558.
Hastings, J., De Matos, P., Dekker, A., Ennis, M., Harsha, B.,
Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M. &
Steinbeck, C. 2013. The ChEBI reference database and ontology for
biologically relevant chemistry: Enhancements for 2013. Nucleic Acids
Research 41: 456-463.
Kamazeri, T.S.A.T., Samah, O.A., Taher, M., Susanti, D. & Qaralleh,
H. 2012. Antimicrobial activity and essential oils of Curcuma
aeruginosa, Curcuma mangga and Zingiber cassumunar from
Malaysia. Asian Pacific Journal of Tropical Medicine 5(3):
202-209.
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe,
M. 2016. KEGG as a reference resource for gene and
protein annotation. Nucleic Acids Research 44: 457-462.
de Las Rivas, J. & Fontanillo, C. 2010. Protein-protein
interactions essentials: Key concepts to building and analyzing interactome
networks. PLoS Computational Biology 6(6): 1-8.
de Oliveira
Dal’Molin, C.G., Orellana, C., Gebbie, L., Steen, J., Hodson, M.P.,
Chrysanthopoulos, P., Plan, M.R., McQualter, R., Palfreyman, R.W. &
Nielsen, L.K. 2016. Metabolic reconstruction of Setaria italica: A systems
biology approach for integrating tissue-specific omics and pathway analysis of
bioenergy grasses. Frontiers in Plant Science 7: 1-18.
Kitano, H.
2002. Computational systems biology. Nature 420:
206-210.
Lee, M.H.,
Jeong, J.H., Seo, J.W., Shin, C.G., Kim, Y.S., In, J.G., Yang, D.C., Yi, J.S.
& Choi, Y.E. 2004. Enhanced triterpene and phytosterol
biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant and Cell Physiology 45(8): 976-984.
Li, S., Li, Y. & Smolke, C.D. 2018. Strategies for microbial synthesis of high-value phytochemicals. Nature Chemistry 10(4): 395-404.
Liu, Y.,
Roy, S.S., Nebie, R.H.C., Zhang, Y. & Nair, M.G. 2013. Functional
food quality of Curcuma caesia, Curcuma zedoaria and Curcuma
aeruginosa endemic to Northeastern India. Plant Foods for Human
Nutrition 68: 72-77.
Matsuba, Y.,
Zi, J., Jones, A.D., Peters, R.J. & Pichersky, E. 2015. Biosynthesis
of the diterpenoid lycosantalonol via nerylneryl diphosphate in Solanum
lycopersicum. PLoS ONE 10(3): 1-16.
Othman, R., Mohd Zaifuddin, F.A. & Hassan, N.M. 2014. Carotenoid biosynthesis regulatory mechanisms in plants. Journal
of Oleo Science 63(8): 753-760.
Rajkumari,
S. & Sanatombi, K. 2018. Nutritional value, phytochemical composition, and
biological activities of edible Curcuma species: A review. International
Journal of Food Properties 20(3): 2668-2687.
Saithong,
T., Rongsirikul, O., Kalapanulak, S., Chiewchankaset, P., Siriwat, W.,
Netrphan, S., Suksangpanomrung, M., Meechai, A. & Cheevadhanarak, S. 2013.
Starch biosynthesis in cassava: A genome-based pathway reconstruction and its
exploitation in data integration. BMC Systems Biology 7: 1-18.
Sanchez, S. & Demain,
A.L. 2008. Metabolic regulation and overproduction of primary
metabolites. Microbial Biotechnology 1(4): 283-319.
Sawai, S. & Saito, K. 2011. Triterpenoid biosynthesis and
engineering in plants. Frontiers in Plant Science 2: 1-8.
Schläpfer,
P., Zhang, P., Wang, C., Kim, T., Banf, M., Chae, L., Dreher, K., Chavali,
A.K., Nilo-Poyanco, R., Bernard, T., Kahn, D. & Rhee, S.Y. 2017. Genome-wide prediction
of metabolic enzymes, pathways, and gene clusters in plants. Plant
Physiology 173(4): 2041-2059.
Seaver, S.M.D., Henry,
C.S. & Hanson, A.D. 2012. Frontiers in metabolic
reconstruction and modeling of plant genomes. Journal of Experimental
Botany 63(6): 2247-2258.
Simoh,
S. & Zainal, A. 2015. Chemical profiling of Curcuma
aeruginosa Roxb. rhizome using different
techniques of solvent extraction. Asian Pacific Journal of Tropical
Biomedicine 5(5): 412-417.
Singh, B. & Sharma,
R.A. 2015. Plant terpenes: Defense responses, phylogenetic analysis, regulation
and clinical applications. 3 Biotech 5: 129-151.
Szklarczyk,
D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A.,
Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J. & Von Mering, C. 2017. The STRING database in
2017: Quality-controlled protein-protein association networks, made broadly
accessible. Nucleic Acids Research 45: 362-368.
Vishwakarma, R.K.,
Patel, K., Sonawane, P., Kumari, U., Singh, S., Ruby, Abbassi, S., Agrawal,
D.C., Tsay, H.S. & Khan, B.M. 2015. Squalene synthase gene from medicinal
herb Bacopa monniera: Molecular characterization, differential
expression, comparative modeling and docking studies. Plant Molecular Biology
Reporter 33(6): 1675-1685.
Wurtele, E.S., Chappell,
J., Daniel Jones, A., Celiz, M.D., Ransom, N., Hur, M., Rizshsky, L., Crispin,
M., Dixon, P., Liu, J., Widrlechner, M.P. & Nikolau, B.J. 2012. Medicinal
plants: A public resource for metabolomics and hypothesis development. Metabolites 2(4): 1032-1059.
Zaidan, M.W.A., Zainal,
A., Jaganath, I.B. & Simoh, S. 2016. Transcriptomics and
metabolomics data integration for identification the metabolic pathways in Curcuma
aeruginosa. Proceedings of the International
Conference on Natural Products 2016. Terengganu. p. 1.
*Pengarang untuk surat-menyurat; email: zeti.hussein@ukm.edu.my