Sains Malaysiana 46(7)(2017): 1155–1161
http://dx.doi.org/10.17576/jsm-2017-4607-19
Highly-Sensitive Graphene-based
Flexible Pressure Sensor Platform
(Pentas Sensor Tekanan Fleksibel Sensitif
Berasaskan Grafin)
MUHAMMAD ANIQ SHAZNI, MAI WOON LEE
& HING WAH LEE*
MIMOS
Semiconductor (M) Sdn. Bhd,
MIMOS Berhad, Technology Park Malaysia, 57000 Kuala
Lumpur, Federal Territory, Malaysia
Diserahkan: 5 Januari 2017/Diterima: 6 Mac 2017
ABSTRACT
In this work, graphene has
been utilized as the sensing material for the development of a highly-sensitive
flexible pressure sensor platform. It has been demonstrated that a
graphene-based pressure sensor platform that is able to measure pressure change
of up to 3 psi with a sensitivity of 0.042 psi-1 and
a non-linearity of less than 1% has been accomplished. The developed device,
which resides on a flexible platform, will be applicable for integration in
continuous wearables health-care monitoring system for the measurement of blood
pressure.
Keywords: Chemical vapor
deposition (CVD); flexible; graphene; interdigitated electrodes (IDE);
pressure sensor; wearables
ABSTRAK
Dalam kajian ini,
grafin telah digunakan
sebagai bahan
penderiaan untuk pembangunan pentas fleksibel
untuk penderia tekanan darah yang sangat sensitif. Ia telah dibuktikan
bahawa sebuah
pentas
penderia tekanan yang berasaskan grafin berupaya untuk mencapai pengukuran perubahan tekanan sehingga 3 psi dengan kepekaan 0.042 psi-1 dan
ketidak-linearan yang kurang
daripada 1%. Penderia yang telah dibangunkan
ini sesuai
untuk digunakan dalam sistem boleh
guna pemantauan
tekananan darah secara berterusan bagi industri penjagaan
kesihatan.
Kata kunci: Boleh guna; elektrod interdigit (IDE); fleksibel; grafin; pemendapan wap kimia (CVD); penderia tekanan
RUJUKAN
Bao, M. 2000. Micro mechanical transducer -
pressure sensors. Accelerometers and Gyroscopes. New York: Elsevier.
Bunch,
J.S., Van der Zande, A.M., Verbridge, S.S., Frank,
I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G.
& McEuen, P.L. 2007. Electromechanical
resonators from graphene sheets. Science 315(5811): 490-493.
Castellanos-Gomez,
A., Poot, M., Steele, G.A., Van der Zant, H.S.J., Agraït, N. &
Rubio-Bollinger, G. 2012. Mechanical properties of freely suspended
semiconducting graphene-like layers based on MoS2. Nanoscale
Research Letters 7: 233.
Chen, C., Rosenblatt, S., Bolotin, K.I.,
Kalb, W., Kim, P., Kymissis, I., Stormer,
H.L., Heinz, T.F. & Hone, J. 2009. Performance
of monolayer graphene nanomechanical resonators with
electrical readout. Nature Nanotechnology 4(12): 861-867.
Frank, I.W., Tanenbaum, D.M., Van der Zande, A.M. & McEuen, P.L. 2007. Mechanical
properties of suspended graphene sheets. Journal of Vacuum Science
& Technology B, Nanotechnology and Microelectronics: Materials, Processing,
Measurement, and Phenomena 25(6): 2558-2561.
Gau, C., Ko, H.S.
& Chen, H.T. 2009. Piezoresistive characteristics
of MWNT nanocomposites and fabrication as a polymer pressure sensor. Nanotechnology 20: 185503.
Gómez-Navarro, C., Burghard, M. &
Kern, K. 2008. Elastic properties of chemically derived single
graphene sheets. Nanoletters 8(7):
2045-2049.
Helbling, T., Drittenbass,
S., Durrer, L., Roman, C. & Hierold,
C. 2009. Ultra small single walled carbon nanotube
pressure sensors. IEEE 22nd International Conference on
Micro Electro Mechanical Systems. pp. 575-578.
Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F. & Zhang, H. 2011. Graphene-based materials: Synthesis, characterization, properties, and
applications. Small 7(14): 1876-1902.
Jun, S., Tashi, T. & Park, H.S.
2011. Size dependence of the nonlinear elastic softening of nanoscale
graphene monolayers under plane-strain bulge tests: A molecular dynamics study. Journal of Nanomaterials (Special Issue) 2011: Article No. 15.
Kesapragada,
S.V., Victor, P., Nalamasu, O. & Gall, D. 2006. Nanospring pressure sensors grown by glancing angle deposition. Nano Letters 6(4):
854-857.
Kwon, O.K., Lee, J.H., Kim, K.S. & Kang, J.W. 2013. Developing ultrasensitive pressure sensor based on graphene nanoribbon:
Molecular dynamics simulation. Physica E:
Low-dimensional Systems and Nanostructures 47: 6-11.
Lanotte, L., Ausanio,
G., Hison, C., Iannotti,
V., Luponio, C. & Luponio Jr., C. 2004. State of the art and development trends of
novel nanostructured elastomagnetic composites. Journal of Optoelectronics and Advanced Materials 6(2): 523-532.
Luheng,
W., Tianhuai, D. & Peng, W. 2009. Thin flexible pressure sensor array based on carbon black/silicone rubber
nanocomposite. IEEE Sens. J. 9: 1130-1135.
Milaninia,
K.M., Baldo, M.A., Reina, A. & Kong, J. 2009. All
graphene electromechanical switch fabricated by
chemical vapor deposition. Applied Physics Letters 95(18):
183105.
Patil,
S., Sinha, N. & Melnik, R.V.N. 2009. Modeling of GaN/AlN heterostructure-based nano pressure sensors. In Nanoengineering Fabrication, Properties, Optics and Devices IV, edited by Dobisz, E.A. & Eldada, L.A.
San Diego: SPIE-The International Society for Optical Engineering. 74020C-8.
Poot, M. & van der Zant, H.S.J. 2008. Nanomechanical properties of
few-layer graphene membranes. Applied Physics
Letters 92(6): 063111.
Singh, V., Sengupta, S., Solanki, H.S., Dhall, R., Allain, A., Dhara, S., Pant, P. & Deshmukh,
M.M. 2010. Probing thermal expansion of graphene and modal
dispersion at low-temperature using graphene nanoelectromechanical systems
resonators. IOP Science Nanotechnology 21(16): 165204.
Sorkin, V.
& Zhang, Y.W. 2011. Graphene-based pressure nano-sensors. Journal of Molecular Modeling 17(11): 2825-2830.
Yao, H-B., Ge,
J., Wang, C-F., Wang, X., Hu, W., Zheng, Z-J., Ni, Y. & Yu, S-H. 2013. A flexible and highly
pressure-sensitive graphene-polyurethane sponge based on fractured
microstructure design. Adv. Mater. 25(46): 6692-6698.
*Pengarang
untuk surat-menyurat;
email: hingwah.lee@mimos.my