Sains Malaysiana 46(7)(2017): 1125–1139
http://dx.doi.org/10.17576/jsm-2017-4607-16
Graphene for Biomedical
Applications: A Review
(Grafin untuk Aplikasi Bioperubatan: Suatu Sorotan)
AZRUL AZLAN HAMZAH*, REENA SRI SELVARAJAN
& BURHANUDDIN YEOP MAJLIS
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 27 Disember 2016/Diterima: 13 Februari 2017
ABSTRACT
Since its discovery in 2004,
graphene has enticed engineers and researchers from various fields
to explore its possibilities to be incepted into various devices
and applications. Graphene is deemed a ‘super’ material
by researchers due to its extraordinary strength, extremely high
surface-to-mass ratio and superconducting properties. Nonetheless,
graphene has yet to find plausible footing as an electronics material.
In biomedical field, graphene has proved useful in tissue engineering,
drug delivery, cancer teraphy, as
a component in power unit for biomedical implants and devices
and as a vital component in biosensors. Graphene is used as scaffolding
for tissue regeneration in stem cell tissue engineering, as active
electrodes in supercapacitor for powering wearable and implantable
biomedical devices and as detectors in biosensors. In tissue engineering,
the extreme strength of monolayer graphene enables it to hold stem cell tissues as
scaffold during in-vitro cell regeneration process. In MEMS supercapacitor,
graphene's extremely high surface-to-mass ratio enables it to
be used as electrodes in order to increase the power unit's energy
and power densities. A small yet having high energy and power
densities cell is needed to power often space constrainted
biomedical devices. In FET
biosensors, graphene acts as detector electrodes,
owing to its superconductivity property. Graphene detector electrodes is capable of detecting target
molecules at a concentration level as low as 1 pM,
making it the most sensitive biosensor available today. Graphene
continues to envisage unique and exciting applications for biomedical
field, prompting continuous research which results and implementation
could benefit the general public in decades to come.
Keywords: Biomedical applications; FET biosensor; graphene; scaffolding; supercapacitor; tissue
engineering
ABSTRAK
Sejak penemuannya pada
tahun 2004, grafin
telah menarik minat
para jurutera dan
penyelidik daripada pelbagai bidang untuk mengkaji kebolehaplikasiannya di dalam
pelbagai peranti dan penggunaan. Grafin dianggap sebagai bahan super oleh penyelidik disebabkan kekuatannya yang amat tinggi, nisbah luas permukaan kepada jisim yang sangat besar dan
sifat superkonduktornya.
Walau
bagaimanapun, grafin masih belum diakui
sebagai bahan
elektronik. Di dalam
bidang bioperubatan,
grafin telah digunakan
di dalam kejuruteraaan
tisu, penyampaian ubat, rawatan kanser,
sebagai komponen
unit kuasa untuk implan
dan peranti
bioperubatan dan sebagai komponen penting di dalam pengesan bio. Grafin digunakan sebagai
perancah untuk
pembinaan semula tisu di dalam kejuruteraan
tisu sel
induk, sebagai elektrod aktif di dalam superkapasitor untuk menghidupkan peranti bioperubatan bolehpakai dan implan serta sebagai unsur pengesanan
di dalam pengesan bio. Di dalam
bidang kejuruteraan tisu, kekuatan grafin selapis yang amat tinggi membolehkannya
memegang tisu-tisu
sel induk sebagai
perancah semasa
proses pertumbuhan semula sel secarain-vitro.
Di dalam superkapasitor
MEMS,
nisbah luas
permukaan kepada jisim grafin yang tinggi membolehkan penggunaannya sebagai elektrod untuk meningkatkan ketumpatan tenaga dan kuasa
unit tersebut. Sel kuasa
yang kecil tetapi
mempunyai ketumpatan tenaga dan kuasa
yang tinggi sering
diperlukan di dalam peranti bioperubatan yang acapkali terbatas oleh saiz yang kecil. Di dalam
pengesan bio FET, grafin
yang mempunyai sifat
konduktiviti super berfungsi
sebagai elektrod pengesan. Elektrod pengesan grafin
boleh mengesan
molekul sasaran dengan kepekatan serendah 1 pM, menjadikannya pengesan bio paling
sensitif pada
masa kini. Grafin terus merealisasikan kegunaan unik dan
menarik di dalam
bidang bioperubatan, yang seterusnya menarik minat para penyelidik untuk terus menghasilkan
penggunaan yang berguna
untuk masyarakat pada masa akan
datang.
Kata kunci: Aplikasi bioperubatan; grafin; kejuruteraan tisu; pengesan bio FET; sokongan; superkapasitor
RUJUKAN
Abidin,
H.E.Z., Hamzah, A.A., Mohamed, M.A.,
Majlis, B.Y. & Marsi, N.
2015.
Electrical performances based on two different structured of micro
supercapacitor electrodes. IEEE Regional Symposium on Micro
and Nano Electronics (RSM) 4: 5-8. doi:10.1109/RSM.2015.7354977.
Abidin,
H.E.Z., Hamzah, A.A. & Majlis,
B.Y. 2011.
Design of interdigital structured supercapacitor for powering
biomedical devices. 2011 IEEE Regional
Symposium on Micro and Nanoelectronics, RSM 2011 - Programme
and Abstracts. pp. 88-91. doi:10.1109/RSM.2011.6088298.
Adzhri, R., Md Arshad,
M.K., Gopinath, S.C.B., Ruslinda,
A.R., Fathil, M.F.M., Ayub,
R.M., M. Nuhaizan, Mohd Nor & Voon, C.H. 2016. High-performance integrated
field-effect transistor-based sensors. Analytica Chimica Acta917: 1-18.
doi:10.1016/j.aca.2016.02.042.
Ahadian,
S., Obregón, R., Ramón-Azcón,
J., Salazar, G., Shiku, H., Ramalingam,
M. & Matsue, T. 2016. Carbon nanotubes and
graphene-based nanomaterials for stem cell differentiation and tissue
regeneration. Journal of Nanoscience and Nanotechnology 16(9):
8862-8880. doi:10.1166/jnn.2016.12729.
Akhavan,
O. 2016. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue
engineering of nervous systems. J. Mater. Chem. B 4: 3169-3190. doi:10.1039/C6TB00152A.
Akhavan,
O., Ghaderi, E., Abouei,
E., Hatamie, S. & Ghasemi,
E. 2014. Accelerated differentiation of neural stem cells into neurons
on ginseng-reduced graphene oxide sheets. Carbon 66: 395-406.
doi:10.1016/j.carbon.2013.09.015.
Ali,
U., Karim, K.J.B.A. & Buang, N.A. 2015. A review of the
properties and applications of poly(methyl
methacrylate) (PMMA). Polymer Reviews 55(10): 678-705. doi:10.1080/ 15583724.2015.1031377.
Amine,
A., Mohammadi, H., Bourais,
I. & Palleschi, G. 2006. Enzyme inhibition-based biosensors for food safety and
environmental monitoring. Biosensors and Bioelectronics 21(8):
1405-1423. doi:10.1016/j.bios.2005.07.012.
Bae, S., Kim,
H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan,
J., Lei, T., Kim, H.R., Song, Young II, Kim, Y-K., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong,
B.H. & Iijima, S. 2010. Roll-to-roll production
of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5(8):
574-578. doi:10.1038/nnano.2010.132.
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K.
2009. The electronic properties of graphene. Reviews of
Modern Physics 81(1): 109-162. doi:10.1103/
RevModPhys.81.109.
Chaudhary,
R., Sharma, A., Sinha, S., Yadav, J., Sharma, R., Mukhiya,
R. & Khanna, V.K. 2016. Fabrication and characterisation of Al gate n-metal-oxide-semiconductor field-effect transistor, on-chip
fabricated with silicon nitride ion-sensitive field-effect transistor. IET
Computers and Digital Techniques 10(5): 268-272.
doi:10.1049/iet-cdt.2015.0174.
Chen,
T-Y., Loan, P.T.K., Hsu, C-L., Lee, Y-H., Wang, J. T-W., Wei, K-H., Lin, C-T. & Li, L.J.
2013. Label-free detection of DNA hybridization using transistors based on CVD
grown graphene. Biosensors & Bioelectronics 41: 103-109.
doi:10.1016/j.bios.2012.07.059.
Cheng,
Q., Tang, J., Ma, J., Zhang, H., Shinya, N. & Qin, L.C. 2011. Graphene and carbon nanotube composite electrodes for
supercapacitors with ultra-high energy density. Physical Chemistry
Chemical Physics 13(39): 17615-17624. doi:10.1039/c1cp21910c.
Choi,
W., Lahiri, I., Seelaboyina,
R. & Kan, Y.S. 2010. Synthesis of
graphene and its applications: A review. Critical Reviews in Solid State and
Materials Sciences 35(1): 52-71. doi:10.1080/10408430903505036.
Craciun, M.F., Russo,
S., Yamamoto, M. & Tarucha, S. 2011. Tuneable electronic properties in graphene. Nano Today 6(1): 42-60.
doi:10.1016/j.nantod.2010.12.001.
Cui, Y. 2013. Nanowire nanosensors for highly sensitive
and selective detection of biological and chemical species. Science 293(5533):
1289-1292. doi:10.1126/science.1062711.
Dong,
X., Shi, Y., Huang, W., Chen, P. & Li, L.J. 2010. Electrical
detection of DNA hybridization with single-base specificity using transistors
based on CVD-grown graphene sheets. Advanced Materials 22(14):
1649-1653. doi:10.1002/ adma.200903645.
Dreyer,
D.R., Ruoff, R.S. & Bielawski,
C.W. 2010. From conception to realization: An historial account of graphene and some perspectives for its future. Angewandte Chemie - International Edition 49(49): 9336-9344. doi:10.1002/ anie.201003024.
Dubal, D.P., Ayyad, O., Ruiz, V. & Gómez-Romero, P. 2015. Hybrid
energy storage: The merging of battery and supercapacitor chemistries. Chem.
Soc. Rev. 44(7): 1777- 1790. doi:10.1039/C4CS00266K.
Feng,
L., Chen, Y., Ren, J. & Qu, X. 2011. A graphene functionalized
electrochemical aptasensor for selective label-free
detection of cancer cells. Biomaterials 32(11): 2930-2937.
doi:10.1016/j.biomaterials.2011.01.002.
Fiori,
G. & Iannaccone, G. 2009. Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron Device Letters 30(10):
1096-1098. doi:10.1109/LED.2009.2028248.
Gao, D., Li, M.,
Li, H., Li, C., Zhu, N. & Yang, B. 2016. Sensitive
detection of biomolecules and DNA bases based on graphene nanosheets. Journal of Solid State Electrochemistry 21(3): 813-821. doi:10.1007/s10008-016-3423-0.
Ge,
C., Li, H., Li, M., Li, C., Wu, X. & Yang, B. 2015. Synthesis of a ZnO nanorod/CVD
graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon 95: 1-9. doi:10.1016/j.carbon.2015.08.006.
Innova Research. 2015.
Overcapacity will soon reshape graphene industry landscape. https://www.newswire.com/
news/overcapacity-will-soon-reshape-graphene-production-landscape. Accessed on February 6, 2017.
Novoselov, K.S., Jiang,
Z., Zhang, Y., Morozov, S.V., Stormer,
H.L., Zeitler, U., Maan,
J.C., Boebinger, G.S., Kim, P. & Geim, A.K. 2007. Room temperature quantum
hall effect in graphene. Science 315(5817): 1379. DOI: 10.1126/
science.1137201.
Goenka, S., Sant,
V. & Sant, S. 2014. Graphene-based
nanomaterials for drug delivery and tissue engineering. Journal of
Controlled Release 173(1): 75-88. doi:10.1016/j.
jconrel.2013.10.017.
González, Z., Vizireanu, S., Dinescu, G., Blanco, C. & Santamaría,
R. 2012. Carbon nanowalls thin films as
nanostructured electrode materials in vanadium redox flow batteries. Nano
Energy 1(6): 833-839. doi:10.1016/j.nanoen.2012.07.003.
Guo,
S.R., Lin, J., Penchev, M., Yengel,
E., Ghazinejad, M., Ozkan,
C.S. & Ozkan, M. 2011. Label free DNA
detection using large area graphene based field effect transistor biosensors. Journal
of Nanoscience and Nanotechnology 11(6): 5258-5263.
doi:10.1166/jnn.2011.3885.
Hass,
J., de Heer, W.A. & Conrad, E.H. 2008. The growth and morphology of epitaxial multilayer graphene. Journal
of Physics: Condensed Matter 20(32): 323202.
doi:10.1088/0953-8984/20/32/323202.
Hassan,
S., Suzuki, M., Mori, S. & El-Moneim, A.A. 2014. MnO2/ carbon nanowalls composite
electrode for supercapacitor application. Journal of Power Sources 249(January):
21-27. doi:10.1016/j.jpowsour.2013.10.097.
Huang, Y., Dong,
X., Shi, Y., Li, C.M., Li, L.J. & Chen, P. 2010. Nanoelectronic biosensors based on
CVD grown graphene. Nanoscale 2(8): 1485-1488. doi:10.1039/c0nr00142b.
Hwang, J., Yoon,
T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H. &
Jeon, S. 2013. Enhanced mechanical properties of
graphene/copper nanocomposites using a molecular-level mixing process. Advanced
Materials 25(46): 6724-6729. doi:10.1002/adma.201302495.
Kang, S.J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M.A., Rotkin, S.V. & Rogers, J.A. 2007. High-performance
electronics using dense, perfectly aligned arrays of single-walled carbon
nanotubes. Nature Nanotechnology 2(4): 230-236. doi:10.1038/nnano.2007.77.
Kedzierski, J. 2008. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Devices, 55(8): 2078-2085.
http://dx.doi.org/10.1109/TED.2008.926593.
Kim,
J.P., Lee, B.Y., Lee, J., Hong, S. & Sim, S.J. 2009. Enhancement of
sensitivity and specificity by surface modification of carbon nanotubes in
diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosensors and Bioelectronics 24(11): 3372-3378.
doi:10.1016/j.bios.2009.04.048.
Lee,
S.K., Kim, H. & Shim, B.S. 2013. Graphene: An emerging material for
biological tissue engineering. Carbon Letters 14(2): 63-75.
doi:10.5714/CL.2013.14.2.063.
Lemme, M.C., Member,
S., Echtermeyer, T.J., Baus,
M. & Kurz, H. 2007. A graphene
field-effect device. IEEE Electron Device Letters 28(4): 282-284.
Li, N., Zhang,
Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L.,
Dai, J., Tang, M. & Cheng, G. 2013. Three-dimensional
graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientific Reports 3: 1604. doi:10.1038/
srep01604.
Li,
X. & Wei, B. 2013. Supercapacitors based on nanostructured carbon. Nano
Energy 2(2): 159-173. doi:10.1016/j.
nanoen.2012.09.008.
Liu,
C., Yu, Z., Neff, D., Zhamu, A. & Jang, B.Z.
2010a. Graphene-based supercapacitor with an ultrahigh energy
density. Nano Letters 10(12): 4863-4868. doi:10.1021/
nl102661q.
Liu,
C., Yu, Z., Neff, D., Zhamu, A. & Jang, B.Z.
2010b. Graphene-based supercapacitor with an ultrahigh energy
density - SI. Nano Letters 10(12): 4863-4868. doi:10.1021/
nl102661q.
Liu,
S. & Guo, X. 2012. Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Materials 4(8): e23. doi:10.1038/am.2012.42.
Lu,
M., Lee, D., Xue, W. & Cui, T. 2009. Flexible and
disposable immunosensors based on layer-by-layer
self-assembled carbon nanotubes and biomolecules. Sensors and Actuators A:
Physical 150(2): 280-285. doi:10.1016/j.sna.2008.12.021.
Lund,
A.W., Yener, B., Stegemann,
J.P. & Plopper, G.E. 2009. The natural and engineered 3D microenvironment as a regulatory cue
during stem cell fate determination. Tissue
Engineering. Part B, Reviews 15(3): 371-380. doi:10.1089/ ten.teb.2009.0270.
Maehashi,
K., Katsura, T., Kerman, K., Takamura,
Y., Matsumoto, K. & Tamiya, E. 2007. Label-free protein biosensor
based on aptamer-modified carbon nanotube field-effect transistors. Analytical
Chemistry 79(2): 782-787. doi:10.1021/ ac060830g.
Mannoor,
M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan,
D.L., Naik, R.R., Verma,
N., Omenetto, F.G. & McAlpine,
M.C. 2014. Graphene-based wireless bacteria detection on tooth enamel. Nature Mater. XXXIII(2):
81-87. doi:10.1007/ s13398-014-0173-7.2.
Mao,
S., Yu, K., Chang, J., Steeber, D.A., Ocola, L.E. & Chen, J. 2013. Direct growth of vertically-oriented graphene for field-effect
transistor biosensor. Scientific Reports 3: 1696. doi:10.1038/srep01696.
Mao,
S., Yu, K., Lu, G. & Chen, J. 2011. Highly sensitive protein sensor
based on thermally-reduced graphene oxide field-effect transistor. Nano
Research 4(10): 921-930. doi:10.1007/
s12274-011-0148-3.
Nguyen,
T., Pei, R., Landry, D.W., Stojanovic, M.N. &
Lin, Q. 2011. Microfluidic aptameric affinity sensing of vasopressin for
clinical diagnostic and therapeutic applications. Sensors and
Actuators B: Chemical 154(1): 59-66. doi:10.1016/j.
snb.2009.10.032.
Ohno,
Y., Maehashi, K. & Matsumoto, K. 2010. Label-free biosensors based on
aptamer-modified graphene field-effect transistors. Journal of the American
Chemical Society 132(51): 18012-18013. doi:10.1021/ja108127r.
Ohno,
Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. 2009. Electrolyte-gated graphene field-effect transistors for detecting
pH and protein adsorption. Nano Lett. 9(9): 3318-3322.
Park, S.Y.,
Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H. & Hong, S. 2011. Enhanced differentiation of human neural stem cells into neurons on
graphene. Advanced Materials 23(36): 263-267.
doi:10.1002/adma.201101503.
Pei,
S. & Cheng, H.M. 2012. The reduction of graphene
oxide. Carbon 50(9): 3210-3228. doi:10.1016/j.carbon.2011.11.010.
Peng, Z., Lin,
J., Ye, R., Samuel, E.L.G. & Tour, J.M. 2015. Flexible
and stackable laser-induced graphene supercapacitors. ACS Applied
Materials and Interfaces 7(5): 3414-3419. doi:10.1021/am509065d.
Peres,
N.M.R. 2009. The electronic properties of graphene and its bilayer. Vacuum 83(10): 1248-1252. doi:10.1016/j.
vacuum.2009.03.018.
Ping,
J., Vishnubhotla, R., Vrudhula,
A. & Johnson, A.T.C. 2016. Scalable production of high sensitivity,
label-free DNA biosensors based on back-gated graphene field effect
transistors. ACS Nano acsnano.6b04110. doi:10.1021/ acsnano.6b04110.
Ping,
J., Zhou, Y., Wu, Y., Papper, V., Boujday,
S., Marks, R.S. & Steele, T.W.J. 2015. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosensors and
Bioelectronics 64: 373-385. doi:10.1016/j.bios.2014.08.090.
Rakheja, S. & Sengupta,
P. 2016. Gate-voltage tunability of plasmons in single-layer graphene structures - Analytical
description, impact of interface states, and concepts for terahertz devices. IEEE
Transactions on Nanotechnology 15(1): 113-121.
doi:10.1109/TNANO.2015.2507142.
Ren, W. &
Cheng, H. 2014. The global growth of graphene. Nature
Nanotechnology 9: 726-730. doi:10.1038/nnano.2014.229.
Iro, Z.S., Subramani,
C. & Dash, S.S. 2016. A brief review on electrode
materials for supercapacitor. International Journal of
Electrochemical Science 11: 10628-10643. doi:10.20964/2016.12.50.
Simon, P. & Gogotsi, Y. 2008. Materials for
electrochemical capacitors. Nature Materials 7(11): 845-854. doi:10.1038/ nmat2297.
Sordan, R., Traversi, F. & Russo, V. 2009. Logic gates with a single
graphene transistor. Applied Physics Letters 94:
073305. doi:10.1063/1.3079663.
Star, A., Tu, E., Niemann, J., Gabriel,
J.C.P., Joiner, C.S. & Valcke, C. 2006. Label-free
detection of DNA hybridization using carbon nanotube network field-effect
transistors. Proceedings of the National Academy of Sciences 103(4):
921-926. doi:10.1073/pnas.0504146103.
Tan, Y.B. &
Lee, J.M. 2013. Graphene for supercapacitor applications. Journal
of Materials Chemistry A 1(47): 14814- 14843. doi:10.1039/c3ta12193c.
Taychatanapat, T., Watanabe, K., Taniguchi, T.
& Jarillo-Herrero, P. 2011. Quantum hall effect and Landau level crossing of Dirac fermions in trilayer graphene. Nature Physics 7(8): 621-625. doi:10.1038/nphys2008.
Tran, T.T.
& Mulchandani, A. 2016. Carbon
nanotubes and graphene nano field-effect transistor-based
biosensors. Trends in Analytical Chemistry 79: 222-232. doi:10.1016/j. trac.2015.12.002.
Urmann,
K., Modrejewski, J. & Scheper, T. 2017. Aptamer-modified nanomaterials:
Principles and applications. BioNanoMat 18(1-2): 20160012.
doi:10.1515/bnm-2016-0012.
Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Cumhur Tekin, H., Inci, F., Demirci, U., Li, P., Bolotin,
K.I., Liepmann, D. & Renugoplakrishnan,
V. 2015. Graphene-protein field effect biosensors: Glucose sensing. Materials
Today 18(9): 513-522. doi:10.1016/j.mattod.2015.04.003.
Wang, C., Kim,
J., Zhu, Y., Yang, J., Lee, G.H., Lee, S., Yu, J., Pei, R., Liu, G., Nuckolls,
C. Hone, J. & Lin, Q. 2015. An aptameric graphene nanosensor for label-free detection of small-molecule biomarkers. Biosensors and
Bioelectronics 71: 222-229. doi:10.1016/j.bios.2015.04.025.
Wang, J., Ding, B., Hao, X., Xu, Y., Wang, Y., Shen, L., Dou, H. & Zhang,
X. 2016. A modified molten-salt method to prepare graphene
electrode with high capacitance and low self-discharge rate. Carbon 102:
255-261. doi:10.1016/j. carbon.2016.02.047.
Wang, Y., Wang, Y., Chen, J., Guo, H., Liang, K., Marcus, K., Peng, Q.L., Zhang, J. &
Feng, Z.S. 2016. A facile process combined with inkjet printing, surface
modification and electroless deposition to fabricate
adhesion-enhanced copper patterns on flexible polymer substrates for functional
flexible electronics. Electrochimica Acta218: 24-31. doi:10.1016/j.
electacta.2016.08.143.
Xu, G., Abbott,
J., Qin, L., Yeung, K.Y.M., Song, Y., Yoon, H., Kong, J. & Ham, D. 2014. Electrophoretic
and field-effect graphene for all-electrical DNA array technology. Nature
Communications 5: 4866. doi:10.1038/ncomms5866.
Yan, F., Zhang,
M. & Li, J. 2014. Solution-gated graphene transistors for chemical and
biological sensors. Advanced Healthcare Materials 3(3):
313-331. doi:10.1002/ adhm.201300221.
Yang, F., Murugan,
R., Wang, S. & Ramakrishna, S. 2005. Electrospinning of nano/micro
scale poly(l-lactic acid) aligned fibers and their
potential in neural tissue engineering. Biomaterials 26(15): 2603-2610. doi:10.1016/j. biomaterials.2004.06.051.
Yang, J., Zhu,
J., Pei, R., Oliver, J.A., Landry, D.W., Stojanovic,
M.N. & Lin, Q. 2016. Integrated microfluidic aptasensor for
mass spectrometric detection of vasopressin in human plasma ultrafiltrate. Analytical Methods 8(26): 5190-5196. doi:10.1039/c5ay02979a.
Yang, W., Ratinac, K.R., Ringer, S.R., Thordarson,
P., Gooding, J.J. & Braet, F. 2010. Carbon nanomaterials in biosensors:
Should you use nanotubes or graphene. Angewandte Chemie - International Edition 49(12): 2114-2138. doi:10.1002/ anie.200903463.
Zhang, A. &
Zheng, G. 2015. Semiconductor nanowires for biosensors. In Semiconductor
Nanowires: Materials, Synthesis, Characterization and Applications.
Cambridge: Woodhead Publishing. pp. 471-490. doi:10.1016/B978-1-
78242-253-2.00017-7.
Zhang, B. &
Cui, T. 2011. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Applied Physics Letters 98(7): 2011-2014. doi:10.1063/1.3557504.
Zheng, C.,
Huang, L., Zhang, H., Sun, Z., Zhang, Z. & Zhang, G.J. 2015. Fabrication of
ultrasensitive field-effect transistor DNA biosensors by a directional transfer
technique based on CVD-grown graphene. ACS Applied Materials and
Interfaces 7(31): 16953-16959. doi:10.1021/acsami.5b03941.
Zheng, G., Patolsky, F., Cui, Y., Wang, W.U. & Lieber,
C.M. 2005. Multiplexed electrical detection of cancer markers with nanowire
sensor arrays. Nature Biotechnology 23(10): 1294-1301. doi:10.1038/nbt1138.
*Pengarang untuk surat-menyurat;
email: azlanhamzah@ukm.edu.my