Sains Malaysiana 46(7)(2017): 1089–1095
http://dx.doi.org/10.17576/jsm-2017-4607-11
Performance Characterization of Schottky Tunneling Graphene Field Effect Transistor
at 60 nm Gate Length
(Pencirian Prestasi Saluran Schottky Grafin Transistor pada Panjang Get 60 nm)
NOOR FAIZAH ZAINUL ABIDIN1, IBRAHIM AHMAD1*, PIN JERN KER1
& P. SUSTHITHA MENON2
1Centre for Micro and Nano
Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor Darul Ehsan, Malaysia
2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 26 Disember 2016/Diterima: 1
Mac 2017
ABSTRACT
A planar Graphene
Field-Effect Transistor GFET performance with 60 nm gate
length was evaluated in discovering new material to meet the relentless demand
for higher performance-power saving features. The ATHENA and ATLAS modules of SILVACO TCAD simulation tool was
employed to virtually design and assess the electrical performance of GFET.
The developed model was benchmarked with the established results obtained from
the DESSIS simulator model by using the same graphene
channel’s parameters and simulated at fixed threshold voltage of 0.4V. The GFET was also analyzed and ranked its performance for four different
gate oxides which includes HfO2, Al2O3,
TiO2, and Ta2O5.
Compared to the benchmarked device, our GFET shows a competitive
performance although it possesses a lower drive current (ION).
However, the leakage current (IOFF), subthreshold swing (SS)
and the device’s switching capability (ION/IOFF)
are more superior than those of the benchmarked
device, with an improvement of 99%, 48.3% and 99.36%, respectively. The with
different gate dielectrics were also proven to possess a lower IOFF,
competitive ION, smaller SS and better switching capability compared
to the established DESSISS model. The graphene parameters
in this experiment can be utilized for further optimization of GFET with
smaller gate lengths.
Keywords: Graphene; high-k
dielectric; SILVACO
ABSTRAK
Prestasi satah panjang pintu 60 nm Grafin transistor GFET dinilai dalam pelapisan bahan baru untuk memenuhi permintaan yang tidak henti-henti untuk ciri-ciri penjimatan prestasi kuasa yang lebih tinggi. GFET yang dianalisis menggunakan ATHENA dan ATLAS modul dalam perisisan Silvaco TCAD mereka bentuk transistor dan menilai prestasi elektrik. Model yang dibangunkan ditanda aras dengan keputusan mantap daripada perisian DESSIS model dengan menggunakan parameter saluran grafin yang sama dan simulasi pada voltan ambang tetap 0.4V. Prestasi GFET juga dianalisis di empat oksida pintu yang berbeza yang termasuklah HfO2,
Al2O3, TiO2 dan Ta2O5. Keputusan peranti menunjukkan prestasi peranti yang berdaya saing dengan peranti asas dan parameter struktur walaupun ia mempunyai arus semasa yang lebih rendah (ION). Kebocoran arus (IOFF),
sub ambang swing (SS) dan keupayaan pensuisan peranti (ION/IOFF) bagaimanapun telah menunjukkan ciri peranti besar dengan peningkatan masing-masing sebanyak 99%, 48.3% dan 99.36%. Keputusan menggunakan dielektrik pintu yang berbeza juga menghasilkan IOFF yang lebih rendah, ION yang berdaya saing,, SS yang lebih kecil dan keupayaan pensuisan yang lebih baik berbanding model DESSISS yang ditubuhkan yang
mana parameter grafin dalam eksperimen ini boleh digunakan untuk pengoptimuman dan mereka bentuk peranti dengan panjang pintu yang lebih kecil.
Kata kunci: Dielektrik tinggi-k; grafin; SILVACO
RUJUKAN
Afifah Maheran,
A.H., Menon, P.S., Ahmad, I. & Shaari, S. 2014. Effect of halo structure variations on the threshold voltage of a
22nm gate length NMOS transistor. Materials Science in Semiconductor
Processing 17: 155-161.
Berger, C., Song, Z., Li, T., Li, X., Ogbazhi,
A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad,
E.H., First, P.N. & de Heer, W.A. 2004. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward
graphene-based nanoelectronics. J. Phys. Chem B. 108: 19912-19916.
Cheli,
M., Fiori, G. & Iannaccone, G. 2009. A semi-analytical model of bilayer-graphene field effect
transistor. IEEE Transactions on Electron Devices 56: 2979-2986.
Durkop,
T., Getty, S.A., Cobas, E. & Fuhrer, M.S. 2004. Extraordinary mobility in semiconducting carbon nanotube. Nano
Letters 4: 35-39.
Ferrari, A.C., Meyer, J.C., Scardaci,
V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov,
K.S., Roth, S. & Geim, A.K. 2006. Raman spectrum of graphene and graphene layers. Physical
Review Letters 97: 187401. DOI: 10.1103/PhysRevLett.97.187401
Fiori,
G., Bonaccorse, F., Iannaccone,
G., Palacios, T., Neumaier, D., Seabaugh,
A., Banerjee, S.K. & Colombo, L. 2014. Electronics based on two-dimensional
materials. Review Article Nature Nanotechnology 9: 768-779. doi:10.1038/ nnano.2014.207.
Kaharudin, K.E., Salehuddin, F., Zain, A.S.M. & Aziz, M.N.I.A 2016. Design and optimization of TiSix/HfO2 channel vertical double gate NMOS device. IEEE Transactions on Electron Devices. pp. 69-73.
Nemes-Incze, P., Osváth, Z., Kamarás, K. &
Biro, L.P. 2008. Anomalies in thickness measurements of graphene and few layer graphite crystals
by tapping mode atomic force microscopy. Carbon 46: 1435-1442.
Noor Faizah, Z.A., Ahmad, I., Ker, P.J. & Menon, P.S. 2016a. Process
characterization of 32nm semi analytical bilayer graphene-based MOSFET. MATEC
Web Conf., IConGDM2016 78: 1-6.
Noor Faizah,
Z.A., Ahmad, I., Ker, P.J., Siti Munirah, Y., Mohd Firdaus, R., Mah, S.K. &
Menon, P.S. 2016b. Statistical modelling of 14nm n-types
MOSFET. Journal of Telecommunication Electronic and Computer
Engineering, JTEC 8: 91-95.
Zhu, J. & Woo, J.C.S. 2007.
Novel graphene channel field effect transistor with Schottky tunneling source and drain. European Solid State Device
Research Conference. pp. 243- 246.
*Pengarang untuk surat-menyurat;
email: AIbrahim@uniten.edu.my