Sains Malaysiana 46(7)(2017): 1075–1082
http://dx.doi.org/10.17576/jsm-2017-4607-09
Electrophoretic Deposition of Carbon
Nanotubes on Heat Spreader for Fabrication of Thermal Interface Materials (TIM)
(Pengendapan Elektroforesis Karbon Tiub Nano ke atas Penyebar Hab untuk Fabrikasi Bahan Antara Dua Muka Haba (TIM))
RAIHANA BAHRU1, ABDUL RAHMAN MOHAMED1*, WEI-MING YEOH2 & KHATIJAH AISHA YAACOB3
1School of Chemical Engineering, Universiti Sains Malaysia, 11800
USM Nibong Tebal,
Pulau Pinang, Malaysia
2Department of Petrochemical
Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Darul Ridzuan, Malaysia
3School of Materials and Mineral
Resources Engineering, Universiti Sains Malaysia, 11800 USM Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 23 Disember 2016/Diterima: 27 Februari 2017
ABSTRACT
Thermal interface materials
(TIMs)
are applied in packaging of electronic devices for heat dissipation purposes.
Carbon nanotubes (CNTs) are promising material due to
their high thermal conductivity properties which will give optimum performance
as TIMs. In this research study, electrophoretic deposition
(EPD)
is used which enables the deposition process conduct at room temperature with
simple equipment setup which beneficial for CNTs
deposition. As-produced CNTs was purified and directly
deposited on heat spreader using direct current (DC)
electricity. Dimethylformamide (DMF)
was used as suspension medium for CNTs and the effect of
suspension concentration was studied. From the screening of suspension
concentration, 0.50 mg/mL yielded good deposition with thickness of 4.78 μm of CNTs deposited on heat spreader
at applied voltage of 150V and 10 min deposition time. Further studied in
different applied voltage and voltage of 250 V shows the maximum thickness of
15.01 μm with 2.0 mg weight of deposited CNTs
which is suitable for fabrication of TIM.
Keywords: Carbon nanotubes;
electrophoretic deposition; thermal interface materials
ABSTRAK
Bahan antara dua
muka haba diaplikasikan
dalam pakej
alatan elektronik untuk tujuan pelesapan
haba. Karbon
tiub nano
(CNT)
dipilih kerana ia mempunyai
konduktiviti haba
baik yang dapat memberi prestasi optimum sebagai bahan antara
dua muka
haba. Di dalam kajian ini, pengendapan
elektroforesis (PE)
adalah digunakan bagi membolehkan proses pengendapan dilakukan pada suhu bilik
berserta pemasangan
alatan yang ringkas iaitu bermanfaat dalam pengendapan NK.
NK yang telah dihasilkan kemudiannya ditulenkan dan diendapkan terus di atas penyebar haba
menggunakan elektrik
arus terus (AT).
Dimetilformamida (DMF) digunakan sebagai medium ampaian untuk NK dan kesan kepekatan ampaian telah dikaji.
Kepekatan ampaian,
0.50 mg/mL menghasilkan endapan
NK
yang baik dengan
ketebalan 4.78 μm di atas penyebar haba
pada voltan
gunaan 150V dan 10 min masa
endapan. Kajian diteruskan bagi voltan gunaan yang berbeza dan menunjukkan
voltan gunaan
250V menghasilkan tebal maksimum 15.01 μm dengan 2.0 mg berat endapan NK yang sesuai
untuk fabrikasi
bahan antara dua
muka haba.
Kata kunci: Bahan antara dua muka haba; nanotiub karbon; pengendapan elektroforesis
RUJUKAN
Bergman, T.L., Incropera, F.P. &
Lavine, A.S. 2011. Fundamentals
of Heat and Mass Transfer. New
York: John Wiley & Sons.
Besra, L.
& Liu, M. 2007. A review on
fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52: 1-61.
Boccaccini,
A.R. & Zhitomirsky, I. 2002. Application of electrophoretic and electrolytic deposition
techniques in ceramics processing. Current Opinion in Solid State and
Materials Science 6: 251-260.
Boccaccini,
A.R., Cho, J., Subhani, T., Kaya, C. & Kaya, F.
2010. Electrophoretic deposition of carbon nanotube-ceramic
nanocomposites. Journal of the European Ceramic Society 30(5):
1115-1129.
Boccaccini,
A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Minay, E.J. & Shaffer, M.S.P. 2006. Electrophoretic deposition of carbon nanotubes. Carbon 44:
3149-3160.
Corni, I., Nico, N., Saša, N., Katja, K., Paolo, V., Qizhi, C.,
Mary, P.R. & Boccaccini, A.R. 2009. Electrophoretic deposition of PEEK-nano alumina composite coatings on stainless steel. Surface and Coatings
Technology 203(10-11): 1349-1359.
Corni,
I., Mary, P.R. & Boccaccini, A.R. 2008. Electrophoretic deposition: From traditional ceramics to nanotechnology. Journal
of the European Ceramic Society 28(7): 1353-1367.
Cott, D.J., Maarten, V., Olivier, R., Iuliana,
R., Stefan, D.G., Sven, V.E. & Philippe, M.V. 2013. Synthesis
of large area carbon nanosheets for energy storage
applications. Carbon 58: 59-65.
Dickerson, J.H., & Boccacini, A.R.
2012. Electrophoretic Deposition of Nanomaterials. New York: Springer.
Fabris, D., Rosshirt, M., Cardenas, C., Wilhite,
P., Yamada, T. & Yang, C.Y. 2011. Application of carbon nanotubes
to thermal interface materials. Journal of Electronic Packaging 133(2):
020902-1-020902-6.
Ferrari, B.
& Moreno, R. 2010. EPD kinetics: A review. Journal of the European Ceramic Society 30(5):
1069-1078.
Fu, Y., Nabi,
N., Teng, W., Shun, W., Zhili,
H., Björn, C., Yan, Z., Xiaojing,
W. & Johan, L. 2012. A complete carbon-nanotube-based
on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 23(4): 045304.
Gwinn, J.P.
& Webb, R.L. 2003. Performance and testing of thermal interface materials. Microelectronics Journal 34(3): 215-222.
Inam, F., Haixue,
Y., Michael, J.R. & Ton, P. 2008. Dimethylformamide:
An effective dispersant for making ceramic-carbon nanotube composites. Nanotechnology 19(19): 195710.
Mehrnoush, K., Chai,
S.P. & Mohamed, A.R. 2015. The effects of process parameters on carbon dioxide reforming
of methane over Co–Mo–MgO/MWCNTs nanocomposite
catalysts. Fuel 158: 129-138.
Kim, D., Shin, D.S., Yu, J., Kim,
H., Kim, J.H. & Woo, C.S. 2015. Thermal spreading in
nanotube coating. Journal of Nanoscience and Nanotechnology 15:
8984-8988.
Kim, B.W.,
Chung, H., Min, B.K., Kim, H. & Kim, W. 2010. Electrochemical capacitors based
on aligned carbon nanotubes directly synthesized on tantalum substrates. Bull.
Korean Chem. Soc. 31: 3697-3702.
Kumar, M. &
Ando, Y. 2010. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and
mass production. J. Nanosci. and Nanotechnol. 10: 3739-3758.
Lee, C.Y., Huei,
M.T., Huey, J.C., Seu, Y.L., Pang, L. & Tseung, Y.T. 2005. Characteristics and
electrochemical performance of supercapacitors with manganese oxide-carbon
nanotube nanocomposite electrodes. Journal of the Electrochemical
Society 152(4): A716.
Llobet, E. 2013. Gas sensors using carbon
nanomaterials: A review. Sensors and Actuators B: Chemical 179: 32-45.
McNamara, A.J., Yogendra, J. & Zhuomin,
M.Z. 2012. Characterization of nanostructured thermal interface materials - A
review. International Journal of Thermal Sciences 62: 2-11.
Mohamed, A.R., Bahru, R., Yeoh, W.M. & Yaacob, K.A. 2016. Dimethyl formamide as
dispersing agent for electrophoretically deposited of
multi-walled carbon nanotubes. International Journal of Petrochemical
Science and Engineering 1(1): 1-4.
Peacock, M.A., Roy, C.K.,
Hamilton, M.C., Johnson, R.W., Knight, R.W. & Harris, D.K. 2016. Characterization of transferred vertically aligned carbon
nanotubes arrays as thermal interface materials. International Journal of
Heat and Mass Transfer 97: 94-100.
Prasher, R. 2006. Thermal interface
materials: Historical perspective, status and future directions. Proceeding of the IEEE 94(8): 1571-1586.
Riddick, T.M. 1968. Control of Colloid Stability through Zeta Potential and its
Relationship to Cardiovascular Disease. New York: Livingston
Publishing.
Sarkar, A.
2013. Electrophoretic deposition of carbon nanotubes on silicon
substrate. Doctoral Thesis. Louisiana,
Louisiana State Uni. p. 138 (Unpublished).
Sarkar, P. & Nicholson, P. 1996. Electrophoretic deposition (EPD) - Mechanisms, kinetics and
applications to ceramics. J. Am. Ceram. Soc. 79: 1987-2002.
Song, L., Guan, Y., Du, P., Yang,
Y., Ko, F. & Xiong, J. 2016. Enhanced efficiency in flexible
dye-sensitized solar cells by a novel bilayer photoanode made of carbon nanotubes incorporated TiO2 nanorods and branched TiO2 nanotubes. Sol.
Energy Mater. Sol. Cells 147: 134-143.
Su, Y. & Zhitomirsky, I. 2013. Electrophoretic deposition of
graphene, carbon nanotubes and composite films using methyl violet dye as a
dispersing agent. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 436(September): 97-103.
Tantra, R.,
Schulze, P. & Quincey, P. 2010. Effect of nanoparticle concentration on Zeta-potential
measurement results and reproducibility. Particuology 8(3): 279-285.
Tong, T., Yang, Z., Lance, D.,
Ali, K., Meyappan, M. & Arun,
M. 2007. Dense vertically aligned multiwalled carbon
nanotubes arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30(1): 92-100.
Van der Biest, O. & Vandeperre, L.J.
1999. Electrophoretic deposition of materials. Annual Review of
Materials Science 29(1): 327-352.
Wang, W.X., Xiuzhen, L., Johan, L., Michael, O.O., Tomas, A. & Dongkai, S. 2006. New nano-thermal
interface materials (nano-TIMs) with SiC nano-particles used for heat
removal in electronics packaging applications. 2006
International Conference on Electronic Materials and Packaging, December. IEEE. pp. 1-5.
Xu, L., Cong,
Y., Johan, L., Yan, Z., Xiu, Z.L. & Zhaonian, C. 2008. Nano-thermal interface material
with CNT nano-particles for heat dissipation
application. Proceedings, International Conference
on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP. pp. 8-11.
Yeoh, W.M., Chai,
S.P., Lee, K.T. & Mohamed, A.R. 2012. Production of carbon nanotubes
from chemical vapor deposition of methane in a continuous rotary reactor
system. Chemical Engineering Communications 199(5): 600-607.
*Pengarang untuk surat-menyurat;
email: chrahman@usm.my