Sains Malaysiana 46(7)(2017): 1047–1059

http://dx.doi.org/10.17576/jsm-2017-4607-06

 

Pengelupasan Grafit untuk Mengkomersilkan Teknologi Grafin

(Graphite Exfoliation to Commercialize Graphene Technology)

 

KIM S. SIOW*

 

Institut Mikro-Juruteraan dan Nanoelektronik, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 21 Disember 2016/Diterima: 25 Januari 2017

 

ABSTRAK

Kertas ini mengkaji teknologi pengelupasan untuk menghasilkan grafin, grafin oksida (GO) dan grafin oksida terturun (rGO). Empat teknologi pengelupasan yang utama dikenal pasti dalam tinjauan ini iaitu pengelupasan mekanik, pengelupasan cecair, interkalasi-pengelupasan dan pengoksidaan-pengelupasan-penurunan. Setiap teknologi ini dibincangkan daripada segi kualiti grafin, grafit nanoplat, GO dan rGO yang dihasilkan dan langkah utama proses termasuk bahan kimia yang digunakan. Kami juga membuat satu kajian kemudah-capaian dan analisis sensitiviti untuk menubuhkan satu kilang penghasilan grafin yang berasaskan teknologi pengelupasan, saiz pasaran grafin dan bahan mentahnya iaitu grafit. Berdasarkan kitar gemburan Gartner, teknologi dan produk yang berasaskan grafin terletak di tiga lokasi iaitu lembah kekecewaan, cerun pencerahan dan dataran tinggi produktiviti.

 

Kata kunci: Grafin; grafin oksida terturun; grafit pengelupasan; interkalasi

 

ABSTRACT

This paper surveys the main exfoliation technologies to produce graphene, grafin oxide or reduced graphene oxide (rGO). The four main exfoliation technologies are known as mechanical exfoliation, liquid exfoliation, intercalation-exfoliation and oxidation-exfoliation-reduction. The qualities of graphene, graphite nanoplate, GO and rGO and the different process steps as well as the chemicals used in these four techniques were discussed in this paper. The review also includes the feasibility and sensitivity analysis of setting up exfoliation-based graphene factory, the market size of graphene and its feedstock i.e. graphite. Depending on the application of the graphene-enabled product, the respective technologies are located either in the trough of disillusionment, slope of enlightenment and plateau of productivity in the Gartner hype cycle.

 

Keywords: Exfoliation; graphene; graphite; intercalation; reduced graphene oxide

RUJUKAN

Advanced Graphene Products - General Presentation Advanced Graphene Products. ubahan terakhir Nov 30, 2016. https:// advancedgrapheneproducts.com/download-en/.

Amir, Mohd. 2017. Development of graphene-enabled NEMS devices. Master's Thesis, Universiti Kebangsaan Malaysia (tidak diterbitkan).

Arvidsson, R., Molander, S. & Sandén, B.A. 2013. Review of potential environmental and health risks of the nanomaterial graphene. Human and Ecological Risk Assessment: An International Journal 19(4): 873-887.

Bayer Materials Science exits carbon nanotube business, Plastics Today, ubahan terakhir 10 Dis 2016 https://www.plasticstoday.com/content/bayer-materialscience-exits-carbon-nanotube-business/97630387718802

Bianco, A., Cheng, H.M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R. & Tascon, J.M. 2013. All in the graphene family-a recommended nomenclature for two-dimensional carbon materials. Carbon 65: 1-6.

Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L. & Ferrari, A.C. 2012. Production and processing of graphene and 2d crystals. Materials Today 15(12): 564-589.

Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A. & Stubos, A.K. 2009. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16): 1841-1845.

Brodie, B. 1860. Sur le poids atomique du graphite. Annales de Chimie et de Physique 59(466): e472.

Chia, J.S.Y., Tan, M.T.T., Khiew, P.S., Chin, J.K. & Siong, C.W. 2016. A facile one-step green synthesis of graphene by mild solvent exfoliation. Science of Advanced Materials 8(6): 1177-1186.

Chia, J.S.Y., Tan, M.T.T., Khiew, P.S., Chin, J.K., Lee, H., Bien, D.C.S. & Siong, C.W. 2014. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application. Chemical Engineering Journal 249: 270-278.

Childres, I., Jauregui, L.A., Park, W., Caoa, H. & Chena, Y.P. 2013. Raman spectroscopy of graphene and related materials.New Developments in Photon and Materials Research. pp. 403-418.

Choi, W., Lahiri, I., Seelaboyina, R. & Kang, Y.S. 2010. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences 35(1): 52-71.

Ciesielski, A. & Samorì, P. 2014. Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 43(1): 381-398.

Coleman, J. & Paton, K. 2013. A scalable process for producing exfoliated defect-free non-oxidised 2-dimensional materials in large quantities. US20160009561A1. Difailkan pada Mac 14, 2013 dan diluluskan/dikeluarkan pada Jan 14, 2016.

Drzal, L., Fukushima, H., Rook, B. & Rich, M. 2006. Method of creating ultra-fine particles of materials using a high-pressure mill. US20060241237.

Du, J. & Cheng, H.M. 2012. The fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics 213(10-11): 1060-1077.

Edwards, R.S. & Coleman, K.S. 2013. Graphene synthesis: Relationship to applications. Nanoscale 5(1): 38-51.

Gao, W., Alemany, L.B., Ci, L. & Ajayan, P.M. 2009. New insights into the structure and reduction of graphite oxide. Nature Chemistry 1(5): 403-408.

Geng, J., Kong, B.S., Yang, S.B. & Jung, H-T. 2010. Preparation of graphene relying on porphyrin exfoliation of graphite. Chemical Communications 46(28): 5091-5093.

Ghaffarzadeh, K. 2016. Graphene, 2D materials and carbon nanotubes: Markets, technologies and opportunities 2016- 2026. IDTechEx. http://www.idtechex.com/research/ reports/graphene-2d-materials-and-carbon-nanotubes-markets-technologies-and-opportunities-2016-2026-000465. asp?viewopt=desc.

Graphene: Quest for the Killer App. Nerac. ubahan terakhir Dis 13, 2016. http://www.nerac.com/graphene-quest-killer-app/.

GrapheneXT tennis racquet. Head. ubahan terakhir Dis 2, 2016. http://www.head.com/en/sports/tennis/technology/graphene-xt/.

Graphite 101. 2016. Focus Graphite. http://www.focusgraphite. com/technology/.

Hasegawa, S. and Kamiya, N.: Graphene powder, apparatus for producing graphene powder, method for producing graphene powder, and product using graphene powder. US20160280551A1. difail Dis 17, 2013 dan diluluskan/dikeluarkan Sept 29, 2016.

Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C. & Coleman, J.N. 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3(9): 563-568.

Huang, K.T. 2016. Graphene Commercialization: Challenges and Opportunities. Graphene Malaysia 2016. Kuala Lumpur: Nano Malaysia & Phantoms Foundations 1.

Hummers Jr., W.S. & Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society 80(6): 1339.

Jang, B., Zhamu, A. & Guo, J. 2006. Mass production of nano-scaled platelets and products. US7785492B1.

Janowska, I., Begin, D., Chizari, K., Ersen, O., Bernhardt, P., Romero, T., Ledoux, M. & Pham-huu, C. 2009. Preparation of graphene by mechanically thinning graphite materials. US9309122B2.

Jeong, H-K., Lee, Y.P., Lahaye, R.J., Park, M-H., An, K.H., Kim, I.J., Yang, C-W., Park, C.Y., Ruoff, R.S. & Lee, Y.H. 2008. Evidence of graphitic AB stacking order of graphite oxides. Journal American Chemical Society 130(4): 1362-1366.

Konios, D., Stylianakis, M.M., Stratakis, E. & Kymakis, E. 2014. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal Colloid Interface Science 430: 108-112.

León, V., Quintana, M., Herrero, M.A., Fierro, J.L., de la Hoz, A., Prato, M. & Vazquez, E. 2011. Few-layer graphenes from ball-milling of graphite with melamine. Chemical Communications 47(39): 10936-10938.

Leugers, M., Nickless, B., Paquette, M., Cieslinski, R. & Shu, T. 2007. Highly efficient process for manufacture of exfoliated graphene. US8246856B2.

Lin, T., Tang, Y., Wang, Y., Bi, H., Liu, Z., Huang, F., Xie, X. & Jiang, M. 2013. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries. Energy & Environmental Science 6(4): 1283-1290.

Liu, L., Xiong, Z., Hu, D., Wu, G. & Chen, P. 2013. Production of high quality single-or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chemical Communications 49(72): 7890-7892.

Liu, Z., Zhou, X., Qin, Z. & Tang, C. 2007. Method for preparing graphene. US9162894B2.

Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z. & McGovern, I. 2009. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 131(10): 3611-3620.

Matawinie graphite project: high purity flake graphite deposit in North America Nouveau Monde. ubahan terakhir Dis 10, 2016. http://nouveaumonde.ca/wp-content/uploads/2016-09- 14-Nouveau-Monde-Corporate-Presentation.pdf. Multi-walled carbon nanotube (773840) Sigma-Aldrich. ubahan terakhir Dis 7 2016. http://www.sigmaaldrich.com/catalog/ product/aldrich/773840?lang=en&region=MY.

Mazurkiewicz, M. & Conrad, B. 1999. Method of creating ultra-fine particles of materials using a high-pressure mill. US6824086B1.

Multi-walled carbon nanotube (773840) Sigma-Aldrich. ubahan terakhir Dis 7 2016. http://www.sigmaaldrich.com/catalog/product/aldrich/773840?lang=en&region=MY.

Norhakim, N., Ahmad, S.H., Chia, C.H. & Huang, N.M. 2014. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana43(4): 603-609.

Novoselov, K.S., Fal'Ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for graphene. Nature 490(7419): 192-200.

Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I. & Firsov, A. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669.

Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S.B., Piccinini, M., Illescas, J. & Mariani, A. 2011. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry 21(10): 3428-3431.

O'Neill, A., Khan, U., Nirmalraj, P.N., Boland, J. & Coleman, J.N. 2011. Graphene dispersion and exfoliation in low boiling point solvents. Journal of Physical Chemistry C 115(13): 5422-5428.

Oh, I.K., Sridhar, V. & Jeon, J. 2010. Method for the fabricating graphene nanosheets, and graphene nanosheets fabricated using the method WO2011083896.

Overview of XG Sciences and Our Materials, XG Sciences, ubahan terakhir Nov 29, 2016. http://xgsciences.com/ products/graphene-nanoplatelets/.

Parviz, D., Irin, F., Shah, S.A., Das, S., Sweeney, C.B. & Green, M.J. 2016. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Advanced Materials 28(40): 8796-8818.

Parviz, D., Das, S., Ahmed, H.T., Irin, F., Bhattacharia, S. & Green, M.J. 2012. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6(10): 8857-8867.

Patents owned by GPC. Graphene Platform Corporation, ubahan terakhir Nov 30, 2016. http://grapheneplatform.com/technology/architecture/.

Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O'Neill, A., Boland, C., Lotya, M., Istrate, O.M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V. & Coleman, J.N. 2014. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 13(6): 624-630.

Pei, S. & Cheng, H.M. 2012. The reduction of graphene oxide. Carbon 50(9): 3210-3228.

Peplow, M. 2015. Graphene booms in factories but lacks a killer app. http://www.nature.com/news/graphene-booms-in-factories-but-lacks-a-killer-app-1.17771.

Pollard, A.J. 2016. Metrology for graphene and 2D materials. Measurement Science and Technology 27(9): 092001.

Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. 2006. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters 6(1): 96-100.

Prud'Homme, R., Aksay, I., Adamson, D. & Abdala, A. 2005. Thermally exfoliated graphite oxide. US7658901B2.

Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H. & Liang, X. 2009. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research 2(9): 706-712.

Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z-Z. & Koratkar, N. 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12): 3884-3890.

Regulation (EC) No. 1907/2006 - REACH. 2006. European Agency Safety at Work. https://osha.europa.eu/en/legislation/ directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council.

Ren, W. & Cheng, H.M. 2014. The global growth of graphene. Nature Nanotechnology 9(10): 726-730

Schlierf, A., Yang, H., Gebremedhn, E., Treossi, E., Ortolani, L., Chen, L., Minoia, A., Morandi, V., Samori, P. & Casiraghi, C. 2013. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: Effect of charge, dipole and molecular structure. Nanoscale 5(10): 4205-4216.

Segal, M. 2009. Selling graphene by the ton. Nature Nanotechnology 4(10): 612-614.

Spitalsky, Z., Tasis, D., Papagelis, K. & Galiotis, C. 2010. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science 35(3): 357-401.

Staudenmaier, L. 1898. Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft31(2): 1481-1487.

Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D. & Dékány, I. 2006. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials 18(11): 2740-2749.

Thostenson, E.T., Ren, Z. & Chou, T.W. 2001. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology 61(13): 1899-1912.

Tung, V.C., Allen, M.J., Yang, Y. & Kaner, R.B. 2009. High-throughput solution processing of large-scale graphene. Nature Nanotechnology 4(1): 25-29.

UK-IP-Office. 2015. Graphene the worldwide patent landscape in 2015. U. I. I. Team. UK, Intellectual Property Office UK.

Vor-Power™ Flexible Battery Strap. Vorbeck Materials, ubahan terakhir Dis 2, 2016. http://store.vorbeck.com/collections/vor-power-flexible-battery-straps/products/vor-power-athena/

Wu, Z-S., Ren, W., Gao, L., Liu, B., Jiang, C. & Cheng, H-M. 2009. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2): 493-499.

Xu, L., McGraw, J-W., Gao, F., Grundy, M., Ye, Z., Gu, Z. & Shepherd, J.L. 2013. Production of high-concentration graphene dispersions in low-boiling-point organic solvents by liquid-phase noncovalent exfoliation of graphite with a hyperbranched polyethylene and formation of graphene/ ethylene copolymer composites. Journal of Physical Chemistry C 117(20): 10730-10742.

Yang, Y., Kaner, R., Tung, C-C. & Matthew, A. 2008. High-throughput solution processing of large scale graphene and device applications. US9105403.

Zhou, K.G., Mao, N.N., Wang, H.X., Peng, Y. & Zhang, H.L. 2011. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie - International Edition 50(46): 10839-10842.

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff, R.S. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22(35): 3906-3924.

Zurutuza, A. & Marinelli, C. 2014. Challenges and opportunities in graphene commercialization. Nature Nanotechnology 9(10): 730-734.

 

 

*Pengarang untuk surat-menyurat; email: kimsiow@ukm.edu.my

 

 

 

 

sebelumnya