Sains Malaysiana 46(7)(2017): 1047–1059
http://dx.doi.org/10.17576/jsm-2017-4607-06
Pengelupasan Grafit untuk Mengkomersilkan Teknologi Grafin
(Graphite Exfoliation to Commercialize
Graphene Technology)
KIM S. SIOW*
Institut Mikro-Juruteraan dan Nanoelektronik, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 21 Disember 2016/Diterima:
25 Januari 2017
ABSTRAK
Kertas ini mengkaji teknologi pengelupasan untuk menghasilkan grafin, grafin oksida (GO) dan grafin oksida terturun (rGO). Empat teknologi pengelupasan yang utama dikenal pasti dalam tinjauan ini iaitu pengelupasan mekanik, pengelupasan cecair, interkalasi-pengelupasan dan pengoksidaan-pengelupasan-penurunan. Setiap teknologi ini dibincangkan daripada segi kualiti grafin, grafit nanoplat, GO dan rGO yang dihasilkan dan langkah utama proses termasuk bahan kimia yang digunakan. Kami juga membuat satu kajian kemudah-capaian dan analisis sensitiviti untuk menubuhkan satu kilang penghasilan grafin yang berasaskan teknologi pengelupasan, saiz pasaran grafin dan bahan mentahnya iaitu grafit. Berdasarkan kitar gemburan Gartner, teknologi dan produk yang berasaskan grafin terletak di tiga lokasi iaitu lembah kekecewaan, cerun pencerahan dan dataran tinggi produktiviti.
Kata kunci:
Grafin; grafin
oksida terturun; grafit pengelupasan; interkalasi
ABSTRACT
This paper surveys the main
exfoliation technologies to produce graphene, grafin oxide or reduced graphene oxide (rGO).
The four main exfoliation technologies are known as mechanical exfoliation,
liquid exfoliation, intercalation-exfoliation and
oxidation-exfoliation-reduction. The qualities of graphene, graphite nanoplate, GO and rGO and
the different process steps as well as the chemicals used in these four
techniques were discussed in this paper. The review also includes the
feasibility and sensitivity analysis of setting up exfoliation-based graphene
factory, the market size of graphene and its feedstock i.e. graphite. Depending
on the application of the graphene-enabled product, the respective technologies
are located either in the trough of disillusionment, slope of enlightenment and
plateau of productivity in the Gartner hype cycle.
Keywords: Exfoliation; graphene; graphite; intercalation; reduced
graphene oxide
RUJUKAN
Advanced Graphene
Products - General Presentation Advanced Graphene Products. ubahan terakhir
Nov 30, 2016. https:// advancedgrapheneproducts.com/download-en/.
Amir, Mohd. 2017. Development of graphene-enabled
NEMS devices. Master's Thesis, Universiti
Kebangsaan Malaysia (tidak diterbitkan).
Arvidsson, R.,
Molander, S. & Sandén,
B.A. 2013. Review of potential environmental and health risks of the nanomaterial
graphene. Human and Ecological Risk Assessment: An International
Journal 19(4): 873-887.
Bayer
Materials Science exits carbon nanotube business, Plastics Today,
ubahan terakhir 10 Dis 2016 https://www.plasticstoday.com/content/bayer-materialscience-exits-carbon-nanotube-business/97630387718802
Bianco,
A., Cheng, H.M., Enoki, T., Gogotsi,
Y., Hurt, R.H., Koratkar, N., Kyotani,
T., Monthioux, M., Park, C.R. &
Tascon, J.M. 2013. All in the graphene
family-a recommended nomenclature for two-dimensional carbon materials.
Carbon 65: 1-6.
Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L. &
Ferrari, A.C. 2012. Production
and processing of graphene and 2d crystals. Materials
Today 15(12): 564-589.
Bourlinos, A.B., Georgakilas,
V., Zboril, R., Steriotis,
T.A. & Stubos, A.K. 2009. Liquid-phase
exfoliation of graphite towards solubilized graphenes.
Small 5(16): 1841-1845.
Brodie, B. 1860. Sur le
poids atomique du graphite.
Annales de Chimie
et de Physique 59(466): e472.
Chia, J.S.Y., Tan, M.T.T., Khiew, P.S.,
Chin, J.K. & Siong, C.W. 2016. A facile one-step green synthesis of graphene by mild solvent exfoliation.
Science of Advanced Materials 8(6): 1177-1186.
Chia, J.S.Y., Tan, M.T.T., Khiew, P.S.,
Chin, J.K., Lee, H., Bien, D.C.S. & Siong,
C.W. 2014. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical
sensing application. Chemical Engineering Journal 249:
270-278.
Childres, I., Jauregui, L.A.,
Park, W., Caoa, H. & Chena, Y.P.
2013. Raman spectroscopy of graphene and related materials.New Developments
in Photon and Materials Research. pp. 403-418.
Choi,
W., Lahiri, I., Seelaboyina,
R. & Kang, Y.S. 2010. Synthesis of graphene and its applications:
A review. Critical Reviews in Solid State and Materials Sciences
35(1): 52-71.
Ciesielski, A. & Samorì, P. 2014. Graphene via sonication assisted
liquid-phase exfoliation. Chemical Society Reviews 43(1):
381-398.
Coleman, J. & Paton, K. 2013. A scalable process
for producing exfoliated defect-free non-oxidised 2-dimensional
materials in large quantities. US20160009561A1. Difailkan pada
Mac 14, 2013 dan diluluskan/dikeluarkan pada Jan 14, 2016.
Drzal,
L., Fukushima, H., Rook, B. & Rich, M. 2006. Method of creating ultra-fine particles of materials using a high-pressure
mill. US20060241237.
Du,
J. & Cheng, H.M. 2012. The fabrication, properties,
and uses of graphene/polymer composites. Macromolecular
Chemistry and Physics 213(10-11): 1060-1077.
Edwards,
R.S. & Coleman, K.S. 2013. Graphene synthesis: Relationship to applications.
Nanoscale 5(1): 38-51.
Gao, W., Alemany, L.B., Ci, L. & Ajayan,
P.M. 2009. New insights into the structure
and reduction of graphite oxide. Nature Chemistry 1(5):
403-408.
Geng,
J., Kong, B.S., Yang, S.B. & Jung, H-T. 2010. Preparation
of graphene relying on porphyrin exfoliation of graphite. Chemical
Communications 46(28): 5091-5093.
Ghaffarzadeh, K. 2016. Graphene,
2D materials and carbon nanotubes: Markets, technologies and opportunities
2016- 2026. IDTechEx. http://www.idtechex.com/research/ reports/graphene-2d-materials-and-carbon-nanotubes-markets-technologies-and-opportunities-2016-2026-000465.
asp?viewopt=desc.
Graphene:
Quest for the Killer App. Nerac. ubahan terakhir Dis 13,
2016. http://www.nerac.com/graphene-quest-killer-app/.
GrapheneXT
tennis racquet. Head. ubahan terakhir Dis 2, 2016. http://www.head.com/en/sports/tennis/technology/graphene-xt/.
Graphite
101.
2016. Focus Graphite. http://www.focusgraphite. com/technology/.
Hasegawa,
S. and Kamiya, N.: Graphene powder, apparatus for producing graphene
powder, method for producing graphene powder, and product using
graphene powder. US20160280551A1. difail Dis 17, 2013 dan diluluskan/dikeluarkan
Sept 29, 2016.
Hernandez, Y.,
Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland,
B., Byrne, M., Gun'ko, Y.K., Boland,
J.J., Niraj, P., Duesberg, G., Krishnamurthy,
S., Goodhue, R., Hutchison, J., Scardaci,
V., Ferrari, A.C. & Coleman, J.N. 2008. High-yield
production of graphene by liquid-phase exfoliation of graphite.
Nature Nanotechnology 3(9): 563-568.
Huang,
K.T. 2016.
Graphene Commercialization: Challenges and Opportunities.
Graphene Malaysia 2016. Kuala Lumpur: Nano Malaysia & Phantoms
Foundations 1.
Hummers
Jr., W.S. & Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American
Chemical Society 80(6): 1339.
Jang,
B., Zhamu, A. & Guo,
J. 2006.
Mass production of nano-scaled
platelets and products. US7785492B1.
Janowska,
I., Begin, D., Chizari, K., Ersen,
O., Bernhardt, P., Romero, T., Ledoux,
M. & Pham-huu, C. 2009. Preparation of graphene
by mechanically thinning graphite materials. US9309122B2.
Jeong, H-K., Lee, Y.P.,
Lahaye, R.J., Park, M-H., An,
K.H., Kim, I.J., Yang, C-W., Park, C.Y., Ruoff,
R.S. & Lee, Y.H. 2008. Evidence of graphitic
AB stacking order of graphite oxides. Journal American
Chemical Society 130(4): 1362-1366.
Konios,
D., Stylianakis, M.M., Stratakis,
E. & Kymakis, E. 2014. Dispersion behaviour of graphene oxide
and reduced graphene oxide. Journal Colloid Interface
Science 430: 108-112.
León, V.,
Quintana, M., Herrero, M.A., Fierro, J.L., de la Hoz,
A., Prato, M. & Vazquez, E. 2011. Few-layer
graphenes from ball-milling of graphite with melamine.
Chemical Communications 47(39): 10936-10938.
Leugers,
M., Nickless, B., Paquette, M., Cieslinski,
R. & Shu, T. 2007. Highly efficient process for manufacture
of exfoliated graphene. US8246856B2.
Lin,
T., Tang, Y., Wang, Y., Bi, H., Liu, Z., Huang, F., Xie,
X. & Jiang, M. 2013. Scotch-tape-like exfoliation of graphite assisted
with elemental sulfur and graphene-sulfur composites for high-performance
lithium-sulfur batteries. Energy & Environmental Science
6(4): 1283-1290.
Liu, L., Xiong, Z., Hu, D., Wu, G. & Chen, P. 2013. Production of high quality single-or few-layered graphene by solid
exfoliation of graphite in the presence of ammonia borane.
Chemical Communications 49(72): 7890-7892.
Liu, Z., Zhou,
X., Qin, Z. & Tang, C. 2007. Method for
preparing graphene. US9162894B2.
Lotya, M., Hernandez,
Y., King, P.J., Smith, R.J., Nicolosi,
V., Karlsson, L.S., Blighe, F.M.,
De, S., Wang, Z. & McGovern, I. 2009. Liquid
phase production of graphene by exfoliation of graphite in surfactant/water
solutions. Journal of the American Chemical Society
131(10): 3611-3620.
Matawinie graphite project:
high purity flake graphite deposit in North
America Nouveau Monde. ubahan terakhir Dis 10,
2016. http://nouveaumonde.ca/wp-content/uploads/2016-09-
14-Nouveau-Monde-Corporate-Presentation.pdf. Multi-walled
carbon nanotube (773840) Sigma-Aldrich. ubahan terakhir Dis 7
2016. http://www.sigmaaldrich.com/catalog/ product/aldrich/773840?lang=en®ion=MY.
Mazurkiewicz,
M. & Conrad, B. 1999. Method of creating
ultra-fine particles of materials using a high-pressure mill.
US6824086B1.
Multi-walled
carbon nanotube (773840) Sigma-Aldrich. ubahan terakhir Dis 7
2016. http://www.sigmaaldrich.com/catalog/product/aldrich/773840?lang=en®ion=MY.
Norhakim,
N., Ahmad, S.H., Chia, C.H. & Huang, N.M. 2014. Mechanical and
thermal properties of graphene oxide filled epoxy nanocomposites.
Sains Malaysiana43(4):
603-609.
Novoselov,
K.S., Fal'Ko, V.I., Colombo, L., Gellert,
P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for
graphene. Nature 490(7419): 192-200.
Novoselov, K., Geim, A., Morozov, S., Jiang,
D., Zhang, Y., Dubonos, S., Grigorieva,
I. & Firsov, A. 2004. Electric
field effect in atomically thin carbon films. Science
306(5696): 666-669.
Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S.B., Piccinini,
M., Illescas, J. & Mariani,
A. 2011. High concentration few-layer graphene
sheets obtained by liquid phase exfoliation of graphite in ionic
liquid. Journal of Materials Chemistry 21(10): 3428-3431.
O'Neill,
A., Khan, U., Nirmalraj, P.N., Boland,
J. & Coleman, J.N. 2011. Graphene dispersion and exfoliation
in low boiling point solvents. Journal of Physical Chemistry
C 115(13): 5422-5428.
Oh, I.K., Sridhar,
V. & Jeon, J. 2010. Method for the fabricating graphene nanosheets, and graphene nanosheets
fabricated using the method WO2011083896.
Overview
of XG Sciences and Our Materials, XG Sciences, ubahan
terakhir Nov 29, 2016. http://xgsciences.com/
products/graphene-nanoplatelets/.
Parviz, D., Irin,
F., Shah, S.A., Das, S., Sweeney, C.B. & Green, M.J. 2016.
Challenges in liquid-phase exfoliation, processing, and assembly
of pristine graphene. Advanced Materials 28(40):
8796-8818.
Parviz,
D., Das, S., Ahmed, H.T., Irin, F.,
Bhattacharia, S. & Green, M.J. 2012. Dispersions
of non-covalently functionalized graphene with minimal stabilizer.
ACS Nano 6(10): 8857-8867.
Patents owned by GPC. Graphene Platform Corporation,
ubahan terakhir Nov 30, 2016. http://grapheneplatform.com/technology/architecture/.
Paton, K.R., Varrla, E., Backes, C., Smith,
R.J., Khan, U., O'Neill, A., Boland, C., Lotya,
M., Istrate, O.M., King, P., Higgins, T., Barwich,
S., May, P., Puczkarski, P., Ahmed,
I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S.E., McGuire,
E.K., Sanchez, B.M., Duesberg, G.S.,
McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi,
V. & Coleman, J.N. 2014. Scalable production
of large quantities of defect-free few-layer graphene by shear
exfoliation in liquids. Nature Materials 13(6):
624-630.
Pei,
S. & Cheng, H.M. 2012. The reduction of graphene
oxide. Carbon 50(9): 3210-3228.
Peplow, M. 2015.
Graphene booms in factories but lacks a killer app. http://www.nature.com/news/graphene-booms-in-factories-but-lacks-a-killer-app-1.17771.
Pollard,
A.J. 2016.
Metrology for graphene and 2D materials.
Measurement Science and Technology 27(9): 092001.
Pop, E., Mann,
D., Wang, Q., Goodson, K. & Dai, H. 2006. Thermal
conductance of an individual single-wall carbon nanotube above
room temperature. Nano Letters 6(1): 96-100.
Prud'Homme,
R., Aksay, I., Adamson, D. & Abdala,
A. 2005. Thermally exfoliated graphite oxide. US7658901B2.
Qian, W., Hao, R., Hou, Y., Tian, Y.,
Shen, C., Gao, H. & Liang, X. 2009.
Solvothermal-assisted exfoliation
process to produce graphene with high yield and high quality.
Nano Research 2(9): 706-712.
Rafiee,
M.A., Rafiee, J., Wang, Z., Song,
H., Yu, Z-Z. & Koratkar, N. 2009. Enhanced mechanical
properties of nanocomposites at low graphene content. ACS
Nano 3(12): 3884-3890.
Regulation
(EC) No. 1907/2006 - REACH. 2006. European
Agency Safety at Work. https://osha.europa.eu/en/legislation/
directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council.
Ren,
W. & Cheng, H.M. 2014. The global growth
of graphene. Nature Nanotechnology 9(10): 726-730
Schlierf, A., Yang, H.,
Gebremedhn, E., Treossi, E.,
Ortolani, L., Chen, L., Minoia,
A., Morandi, V., Samori,
P. & Casiraghi, C. 2013. Nanoscale insight into the exfoliation
mechanism of graphene with organic dyes: Effect of charge, dipole
and molecular structure. Nanoscale 5(10): 4205-4216.
Segal, M. 2009.
Selling graphene by the ton. Nature Nanotechnology 4(10):
612-614.
Spitalsky,
Z., Tasis, D., Papagelis,
K. & Galiotis, C. 2010. Carbon nanotube-polymer
composites: Chemistry, processing, mechanical and electrical properties.
Progress in Polymer Science 35(3): 357-401.
Staudenmaier, L.
1898. Verfahren zur darstellung
der graphitsäure. Berichte
der Deutschen Chemischen
Gesellschaft31(2): 1481-1487.
Szabó,
T., Berkesi, O., Forgó,
P., Josepovits, K., Sanakis,
Y., Petridis, D. & Dékány,
I. 2006. Evolution of surface functional groups in a series of progressively
oxidized graphite oxides. Chemistry of Materials 18(11):
2740-2749.
Thostenson,
E.T., Ren, Z. & Chou, T.W. 2001. Advances in the science and technology
of carbon nanotubes and their composites: A review. Composites
Science and Technology 61(13): 1899-1912.
Tung,
V.C., Allen, M.J., Yang, Y. & Kaner,
R.B. 2009. High-throughput solution processing of large-scale graphene.
Nature Nanotechnology 4(1): 25-29.
UK-IP-Office. 2015. Graphene
the worldwide patent landscape in 2015. U. I. I. Team. UK,
Intellectual Property Office UK.
Vor-Power™
Flexible Battery Strap. Vorbeck Materials, ubahan terakhir Dis
2, 2016. http://store.vorbeck.com/collections/vor-power-flexible-battery-straps/products/vor-power-athena/
Wu, Z-S., Ren,
W., Gao, L., Liu, B., Jiang, C. &
Cheng, H-M. 2009. Synthesis of high-quality graphene with a pre-determined
number of layers. Carbon 47(2): 493-499.
Xu, L., McGraw,
J-W., Gao, F., Grundy, M., Ye, Z.,
Gu, Z. & Shepherd, J.L. 2013.
Production of high-concentration graphene
dispersions in low-boiling-point organic solvents by liquid-phase
noncovalent exfoliation of graphite with a hyperbranched
polyethylene and formation of graphene/ ethylene copolymer composites.
Journal of Physical Chemistry C 117(20): 10730-10742.
Yang,
Y., Kaner, R., Tung, C-C. & Matthew,
A. 2008. High-throughput solution processing
of large scale graphene and device applications. US9105403.
Zhou,
K.G., Mao, N.N., Wang, H.X., Peng, Y. & Zhang, H.L. 2011. A mixed-solvent strategy for efficient exfoliation of inorganic
graphene analogues. Angewandte
Chemie - International Edition 50(46): 10839-10842.
Zhu, Y., Murali, S., Cai,
W., Li, X., Suk, J.W., Potts, J.R. & Ruoff,
R.S. 2010. Graphene and graphene oxide: Synthesis, properties,
and applications. Advanced Materials 22(35): 3906-3924.
Zurutuza,
A. & Marinelli, C. 2014. Challenges and opportunities in graphene commercialization.
Nature Nanotechnology 9(10): 730-734.
*Pengarang untuk surat-menyurat; email: kimsiow@ukm.edu.my