Sains Malaysiana 46(7)(2017): 1039–1045
http://dx.doi.org/10.17576/jsm-2017-4607-05
Synthesis of Graphene
Flakes over Recovered Copper Etched in Ammonium Persulfate Solution
(Sintesis
Grafin Serpih
melalui Kuprum Pulih yang Dipunarkan dalam Larutan
Ammonium Persulfat)
M.K. NIZAM, D. SEBASTIAN, M.I. KAIRI, M. KHAVARIAN
& A.R. MOHAMED*
School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan
14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Diserahkan: 21 Disember 2016/Diterima:
1 Mac 2017
ABSTRACT
The synthesis of high
quality graphene via economic way is highly desirable for practical
applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in
ammonium persulfate solution. Recovered Cu acted as efficient active metal in
Cu/MgO catalyst with good crystal structure and
composition according to XRD and XRF results. FESEM, EDX, HRTEM,
Raman spectroscopy and SAED analysis were carried out on the
synthesized graphene. The formation of single, bilayer and few layer of
graphene from Cu/MgO catalyst derived from recovered
Cu was feasible.
Keywords: CVD;
flake; graphene; MgO; recovered Cu
ABSTRAK
Sintesis grafin berkualiti
tinggi secara
ekonomi adalah sangat diperlukan untuk aplikasi praktikal. Dalam kajian ini, grafin
serpih telah
berjaya disintesis menggunakan pemangkin Cu/MgO yang diperoleh daripada Cu pulih melalui punaran dalam larutan ammonium persulfat. Cu pulih bertindak sebagai logam aktif yang cekap dalam
pemangkin Cu/MgO
dengan struktur kristal
yang baik dan
komposisi berdasarkan keputusan XRD dan
XRF.
FESEM,
EDX,
HRTEM,
Raman spektroskopi dan
analisis SAED telah
dijalankan ke
atas grafin yang disintesis. Pembentukan tunggal, dwilapisan
dan beberapa
lapisan grafin daripada pemangkin Cu/MgO yang diperoleh daripada Cu pulih telah dicapai.
Kata kunci: CVD; grafin; MgO; pemulihan Cu; serpih
RUJUKAN
Chua, C.K. & Pumera, M. 2014. Chemical reduction of graphene oxide: A synthetic chemistry
viewpoint. Chemical Society Reviews 43(1): 291-312.
El Rouby, W.M.A. 2015. Crumpled graphene: Preparation and applications. RSC Adv. 5(82):
66767-66796.
Fan, T., Zeng, W., Niu, Q., Tong, S., Cai, K., Liu, Y., Huang, W., Yong,
M. & Epstein, A.J. 2015. Fabrication of high-quality
graphene oxide nanoscrolls and application in
supercapacitor. Nanoscale Research Letters 10: 192.
Farrouji, A., Eddine, A., Bouzit,
S., Boualy, B., Mehdi, A., Firdoussi,
L. & Ali, M. 2015. Degradation of methylene
blue using synthesized nanostructured CuO with high
specific surface area through catalytic oxidation. International Research
Journal of Pure and Applied Chemistry 8(4): 190-197.
First, P.N., De Heer, W.A., Seyller, T., Berger, C., Stroscio,
J.A. & Moon, J.S. 2010. Epitaxial graphenes on silicon carbide. MRS Bulletin 35(April):
296-305.
Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature
Materials 6(3): 183-191.
Hu, H., Zhao, B., Itkis, M.E. & Haddon,
R.C. 2003. Nitric acid
purification of single-walled carbon nanotubes. The Journal of
Physical Chemistry B 107(50): 13838-13842. doi: 10.1021/ jp035719i.
Li, X., Cai,
W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc,
E., Banerjee, S.K., Colombo, L. & Ruoff, R.S.
2009a. Large-area synthesis of high-quality and uniform
graphene films on copper foils. Science 324(5932): 1312-1314.
doi:10.1126/science.1171245.
Li, X., Cai,
W., Colombo, L. & Ruoff, R.S. 2009b. Evolution of graphene growth on Ni and Cu by carbon isotope
labeling. Nano Letters 9(12): 4268-4272.
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K. & Fal-ko, V.I. 2012. A roadmap for graphene. Nature 490(7419): 192-200.
Sarno, M., Cirillo,
C., Piscitelli, R. & Ciambelli,
P. 2013. A study of the key parameters, including the crucial
role of H2 for uniform graphene growth on Ni foil. Journal of
Molecular Catalysis A: Chemical 366(January): 303-314.
Siriwardane, R.V., Poston Jr., J.A., Fisher, E.P., Shen, M-S. & Miltz, A.L. 1999. Decomposition
of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM,
DRIFTS, XRD, and TGA study. Applied Surface Science 152(3):
219-236.
Song, H-J. & Li, N. 2011. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Applied Physics A 105(4): 827-832.
Sun, Z.,, Yan, Z., Yao, J., Beitler, E., Zhu, Y. & Tour, J.M. 2010. Growth of graphene from solid carbon sources. Nature 468(7323):
549-552.
Tchoul, M.N., Ford, W.T., Lolli,
G., Resasco, D.E. & Arepalli,
S. 2007. Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon
nanotubes. Chemistry of Materials 19(23): 5765-5772. doi: 10.1021/ cm071758l.
Wang, L., Ara, M., Wadumesthrige, K., Salley, S. & Simon Ng, K.Y. 2013. Graphene nanosheet supported
bifunctional catalyst for high cycle life Li-air batteries. Journal of Power
Sources 234: 8-15.
Wolf, E.L. 2014. Chapert 2. Practical productions of graphene, supply and cost. In Applications of Graphene, SpringerBrief in Materials. New York: Springer. pp.
19-38.
Yan, J., Wei, T., Shao,
B., Fan, Z., Qian, W., Zhang, M. & Wei, F. 2010. Preparation
of a graphene nanosheet/polyaniline composite with
high specific capacitance. Carbon 48(2): 487-493.
Yoo,
E. & Zhou, H. 2011. Li-air rechargeable battery based on
metal-free graphene nanosheet catalysts. ACS Nano 5(4):
3020-3026.
Zhang,
D.W., Li, X.D., Li, H.B., Chen, S., Sun, Z., Yin, X.J. & Huang, S.M. 2011. Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15): 5382-5388.
*Pengarang untuk surat-menyurat;
email: chrahman@usm.my