Sains Malaysiana 46(7)(2017): 1033–1038

http://dx.doi.org/10.17576/jsm-2017-4607-04

 

Growth Conditions of Graphene Grown in Chemical Vapour Deposition (CVD)

(Keadaan Tumbesaran Grafin yang Dihasilkan dengan Pemendapan Wap Kimia)

 

MOHAMAD SHUKRI SIRAT1, EDHUAN ISMAIL1, HADI PURWANTO1, MOHD ASYADI

AZAM MOHD ABID2 & MOHD HANAFI ANI1*  

1Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Federal Territory, Malaysia

 

2Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya

76100 Durian Tunggal, Melaka Bandaraya Bersejarah, Malaysia

 

Diserahkan: 31 Oktober 2016/Diterima: 3 Januari 2017

 

ABSTRACT

The fabrication of high quality graphene has become the main interest in current chemical vapour deposition (CVD) method due to the scalability for mass production of graphene-based electronic devices. The quality of graphene is determined by defect density, number of layers and properties changed such as electron mobility, transparency and conductivity as compared to the pristine graphene. Here, we did a study on the effects of reaction conditions such as methane, CH4 concentration and deposition time towards the quality of graphene produced. We found that by lowering both CH4 concentration down to 20% and deposition time to 5 min, a better quality graphene was produced with higher I2D/IG ratio of 0.82 compared to other reaction condition. Through the analysis, we concluded that there are two important parameters to be controlled to obtain high quality graphene.

 

Keywords: Chemical vapour deposition (CVD); graphene; optimization

 

ABSTRAK

Penghasilan grafin yang berkualiti tinggi menjadi tumpuan utama dalam kaedah pemendapan wap kimia (CVD) pada masa kini kerana ia boleh diskalakan untuk pengeluaran peranti elektronik berasaskan grafin secara besar-besaran. Kualiti grafin diukur daripada jumlah kecacatan, jumlah lapisan dan perubahan sifat lain seperti pergerakan elektron, ketelusan dan daya konduksi jika dibandingkan dengan grafin asli. Di sini, kami telah menjalankan kajian perubahan keadaan tindak balas seperti kepekatan metana, CH4 dan masa pemendapan terhadap kualiti grafin yang dihasilkan. Kami telah mengenal pasti dengan menurunkan kedua-dua kepekatan CH4 sehingga 20% dan masa pemendapan sehingga 5 min akan menghasilkan kualiti grafin yang lebih baik dengan nisbah I2D/IG sebanyak 0.82 lebih tinggi berbanding keadaan tindak balas lain. Menerusi analisis ini, kami menyimpulkan bahawa terdapat dua parameter penting yang perlu dikawal untuk menghasilkan grafin yang berkualiti tinggi.

 

Kata kunci: Grafin; pemendapan wap kimia (CVD); pengoptimuman

RUJUKAN

Ago, H., Ohta, Y., Hibino, H., Yoshimura, D., Takizawa, R., Uchida, Y., Tsuji, M., Okajima, T., Mitani, H. & Mizuno, S. 2015. Growth dynamics of single-layer graphene on epitaxial Cu surfaces. Chemistry of Materials 27(15): 5377-5385. doi:10.1021/acs.chemmater.5b01871.

Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H.L. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146(9-10): 351-355. doi:10.1016/j.ssc.2008.02.024.

Borah, M., Singh, D.K., Subhedar, K.M. & Dhakate, S.R. 2015. Role of substrate purity and its crystallographic orientation in the defect density of chemical vapor deposition grown monolayer graphene. RSC Adv. 5(85): 69110-69118. doi:10.1039/C5RA13480C.

Chan, S-H., Chen, S-H., Lin, W-T., Li, M-C., Lin, Y-C. & Kuo, C-C. 2013. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters 8(1): 285. doi:10.1186/1556- 276X-8-285.

Childres, I., Jauregui, L., Park, W., Cao, H. & Chen, Y.P. 2013. Raman spectroscopy of graphene and related materials. New Developments in Photon and Materials Research, edited by Jang, J.I. New York: Nova Science Publishers. doi:10.1016/ B978-0-444-53175-9.00016-7.

Costa, S.D., Righi, A., Fantini, C., Hao, Y., Magnuson, C., Colombo, L., Ruoff, R.S. & Pimenta, M.A. 2012. Resonant Raman spectroscopy of graphene grown on copper substrates. Solid State Communications 152(15): 1317-1320. doi:10.1016/j.ssc.2012.05.001.

Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. 2010. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters 10(3): 751-758. doi:10.1021/nl904286r.

Faggio, G., Capasso, A., Messina, G., Santangelo, S., Dikonimos, Th., Gagliardi, S., Giorgi, R., Morandi, V., Ortolani, L. & Lisi, N. 2013. High-temperature growth of graphene films on copper foils by ethanol chemical vapor deposition. The Journal of Physical Chemistry C 117(41): 21569-21576. doi:10.1021/jp407013y.

Han, G.H., Güneş, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J., Choi, J.Y., Didier Pribat & Lee, Y.H. 2011. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Letters 11(10): 4144-4148. doi:10.1021/ nl201980p.

Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.I. & Mizuno, S. 2012. Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50(1): 57-65. doi:10.1016/j.carbon.2011.08.002.

Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L. & Muller, D.A. 2011. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330): 389-392. doi:10.1038/nature09718.

Ibrahim, A., Akhtar, S., Atieh, M., Karnik, R. & Laoui, T. 2015. Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Carbon 94: 369-377. doi:10.1016/j.carbon.2015.06.067.

Ishihara, M., Koga, Y., Kim, J., Tsugawa, K. & Hasegawa, M. 2011. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Materials Letters 65(19-20): 2864-2867. doi:10.1016/j.matlet.2011.06.047.

Jung, D.H., Kang, C., Kim, M., Cheong, H., Lee, H. & Lee, J.S. 2014. Effects of hydrogen partial pressure in the annealing process on graphene growth. The Journal of Physical Chemistry C 118(7): 3574-3580. doi:10.1021/jp410961m.

Lee, C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388. doi:10.1126/ science.1157996.

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. & Ruoff, R.S. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932): 1312-1314. doi:10.1126/science.1171245.

Liu, W., Li, H., Xu, C., Khatami, Y. & Banerjee, K. 2011. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49(13): 4122-4130. doi:10.1016/j.carbon.2011.05.047.

Luo, Z., Lu, Y., Singer, D.W., Berck, M.E., Somers, L.A., Goldsmith, B.R. & Johnson, A.T.C. 2011. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chemistry of Materials 23(6): 1441-1447. doi:10.1021/cm1028854.

Malard, L.M., Pimenta, M.A., Dresselhaus, G. & Dresselhaus, M.S. 2009. Raman spectroscopy in graphene. Physics Reports 473(5-6): 51-87. doi:10.1016/j.physrep.2009.02.003.

Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R. & Geim, A.K. 2008. Fine structure constant defines visual transperency of graphene. Science 320: 1308. doi:10.1126/science.1156965.

Ogawa, Y., Hu, B., Orofeo, C.M., Tsuji, M., Ikeda, K.I., Mizuno, S., Hibino, H. & Ago, H. 2012. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. Journal of Physical Chemistry Letters 3(2): 219-226. doi:10.1021/jz2015555.

Song, H.S., Li, S.L., Miyazaki, H., Sato, S., Hayashi, K., Yamada, A., Yokoyama, N. & Tsukagoshi, K. 2012. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci. Rep. 2: 337. doi:10.1038/ srep00337.

Sree Harsha, K.S. 2006. Principles of Vapor Deposition of Thin Films. New York: Elsevier. doi:10.1016/B978-008044699- 8/50012-7.

Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E. & Lyding, J.W. 2011. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Letters 11(11): 4547-4554. doi:10.1021/nl201566c.

Yang, H., Shen, C-M., Tian, Y., Wang, G-Q., Lin, S-X., Zhang, Y., Gu, C-Z., Li, J-J. & Gao, H-J. 2014. Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition. Chinese Physics B 23(9): 96803. doi:10.1088/1674-1056/23/9/096803.

Yazyev, O.V. & Louie, S.G. 2010. Electronic transport in polycrystalline graphene. Nature Materials 9(10): 806-809. doi:10.1038/nmat2830.

Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.S. & Chen, Y.P. 2011. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials 10(6): 443-449. doi:10.1038/nmat3010.

 

 

*Pengarang untuk surat-menyurat: mhanafi@iium.edu.my

 

 

 

 

sebelumnya