Sains Malaysiana 46(7)(2017): 1017–1024
http://dx.doi.org/10.17576/jsm-2017-4607-02
Thermal Stability and
Conductivity of Carbon Nanotube Nanofluid using
Xanthan Gum as Surfactant
(Kestabilan
Termal dan
Kekonduksian Bendalir Nano Karbon Tiub Nano menggunakan Gam Xantan sebagai
Surfaktan)
SABA RASHID1I*, RASHMI, W2., LUQMAN CHUAH ABDULLAH3, KHALID, M4., FAKHRUL-RAZI AHMADUN5 & M.Y. FAIZAH6
1Institute
of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Chemical Engineering, Taylor's University, 47500 Subang
Jaya, Selangor
Darul Ehsan, Malaysia
3Materials
Processing & Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
4Research Centre for Nano-Materials and Energy
Technology, Sunway University, No. 5, Jalan
Universiti, Bandar Sunway, 47500 Subang
Jaya, Selangor Darul Ehsan, Malaysia
5Humanitarian Assistance and Disaster Relief
Research Centre, National Defense University, Sungai Besi
Camp, 57000 Kuala Lumpur, Federal Territory, Malaysia
6Institute
of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 17 Oktober 2016/Diterima: 17 Februari 2017
ABSTRACT
A nanofluid is a suspension of nano-sized particles dispersed in
a base fluid. It is very much obligatory to know more about stability and
thermal characteristics of such a nanofluid for their
further use in practical applications. In this research, multiwalled carbon nanotubes (CNT)
is dispersed in water. CNT dispersed in water is
highly unstable and it sediments rapidly due to the Vander Waals force of
attraction. Therefore, to overcome this limitation, xanthan gum (XG)
was added which behave as a promising dispersant followed by 4 h water bath
sonication. Experimental work includes stability studies using UV Vis
spectroscopy with respect to CNT concentration (0.01 and 0.1
wt. %) and XG concentration (0.04 and 0.2 wt. %). The thermal
conductivity of the most stable suspensions was measured using KD 2
Pro as a function of temperature (25-70°C) and CNT concentration.
The optimum XG concentration was found for each CNT concentration
studied. Thermal conductivity was observed to be strongly dependent on
temperature and CNT concentration. The dispersion
state of the CNT-water nanofluid is further
examined using scanning electron microscope (SEM).
In short, CNT nanofluids are found to be
more suitable for heat transfer applications in many industries due to their
enhanced thermal conductivity property. This work provides useful insight on
the behavior of CNT nanofluids.
Keywords: Carbon
nanotubes; nanofluid; stability; thermal
conductivity; xanthan gum
ABSTRAK
Bendalir nano ialah
penggantungan zarah bersaiz nano dalam
bendalir asas. Adalah sangat penting
untuk mengetahui
lebih lanjut tentang
kestabilan dan
pencirian termal daripada bendalir nano tersebut bagi
tujuan kegunaan
praktik selanjutnya.
Dalam kajian ini, pelbagai
lapisan karbon
tiub nano (CNT)
terserak di dalam air.
Penyerakan
CNT
ini tidak stabil
dan endapan
berlaku dengan pantas kerana adanya
daya tarikan
Vander Waals. Oleh
itu, bahan sampingan
gam xantan (XG) telah digunakan
dalam kajian
ini sebagai agen
serakan. Penyelidikan bagi mengkaji
kesan kepekatan CNT (0.01
dan 0.1 wt. %), kepekatan
XG
(0.04 dan 0.2 wt. %) dan
masa sonikasi (4 jam) ke atas kestabilan bendalir nano telah
dijalankan. Bacaan kestabilan
diambil dengan
menggunakan spektrofotometer
UV-Vis.
Termal konduktiviti
yang paling stabil telah
diukur sebagai fungsi suhu (25-70°C) dan kepekatan CNT.
Bendalir nano
didapati tidak stabil pada sonikasi
selama 4 jam dan
kepekatan optimum XG didapati
antara 0.04,0.2
% bt. dan 0.01,0.1 % bt. bagi julat
kepekatan CNT yang dikaji.
Pemerhatian menunjukkan bahawa,
konduktiviti termal
amat bergantung kepada suhu dan
kepekatan CNT. Keputusan mendapati
CNT
bendalir nano
adalah lebih
sesuai untuk aplikasi
pemindahan haba
dalam pelbagai industri kerana adanya peningkatan sifat konduktiviti termal. Kajian ini menyediakan
maklumat mengenai
sifat CNT nano
bendalir.
Kata kunci: Bendalir nano; karbon tiub
nano; kestabilan;
konduktiviti termal; gam xantan
RUJUKAN
Amrollahi, A., Hamidi, A.A. & Rashidi, A.M. 2007. Preparation of MCM-41 nanofluid and an
investigation of Brownian movement of the nanoparticles on the nanofluid conductivity. International Journal of
Nanoscience and Nanotechnology 3(1): 13-20.
Choi, C., Yoo, H.S. & Oh, J.M. 2008. Preparation and heat transfer properties of
nanoparticle-in-transformer oil dispersions as advanced energy-efficient
coolants. Current Applied Physics 8(6): 710-712.
doi:10.1016/j.cap.2007.04.060.
Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal conductivity of fluids with
nanoparticles. ASME International Mechanical
Engineering Congress and Exposition 66: 99- 105. doi:10.1115/1.1532008.
Ding, Y., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Lee,
W.P., Zhang, L. & Huo, R. 2007. Heat transfer intensification using nanofluids. KONA Powder and Particle Journal 25
(March): 23-38. doi:10.14356/kona.2007006.
Fadhillahanafi, N.M., Leong, K.Y. & Risby, M.S.
2013. Stability and thermal conductivity characteristics of carbon
nanotubes based nanofluids. International Journal
of Automotive and Mechanical Engineering 8: 1376-1384.
Garg, P., Alvarado, J.L., Marsh, C., Calrson,
T.A., Kessler, D.A. & Annamalai, K. 2009. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of MWCNT based aqueous nanofluids. International Journal of Heat and Mass
Transfer 52(May): 5090-5101.
Ghadimi, A., Saidur, R. & Metselaar, H.S.C. 2011. A review of nanofluid stability
properties and characterization in stationary conditions. International
Journal of Heat and Mass Transfer 54(August): 4051-4068. doi:10.1016/j.
ijheatmasstransfer.2011.04.014.
Hussein, A.M., Sharma, K.V., Bakar, R.A. & Kadirgama,
K. 2013. Heat transfer enhancement with nanofluids - a review. Journal of Chemical Information and Modeling 4(June):
452-461. doi:10.1017/CBO9781107415324.004.
Ismail, A.R., Wan Sulaiman, W.R., Jaafar, M.Z., Ismail, I. & Sabu Hera, E. 2016. Nanoparticles performance
as fluid loss additives in water based rilling fluids. Materials Science Forum 864: 189-193.
doi:10.4028/www.scientific.net/ MSF.864.189.
Keblinski, P., Phillpot, R., Choi, S. &
Eastman, A. 2002. Mechanisms of heat flow in
suspensions of nano-sized particles (Nanofluids). International Journal of Heat and Mass
Transfer 45: 855-863.
Li, C.H., Williams, W., Buongiorno, J.,
Hu, L-W. & Peterson, G.P. 2008. Transient and
steady-state experimental comparison study of effective thermal conductivity of
Al2O3-water nanofluids. Journal
of Heat Transfer 130(4): 42407. doi:10.1115/1.2789719.
Ling,
Z., He, Z., Xu, T., Fang, X., Gao, X. & Zhang, Z.
2017. Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes. Applied
Sciences 7(1): 48. doi:10.3390/app7010048.
Liu,
M-S., Lin, M.C.C., Huang, I-T. & Wang, C-C. 2005.
Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and
Mass Transfer 32(9): 1202-1210. doi:10.1016/j.
icheatmasstransfer.2005.05.005.
Mahendran,
M., Lee, G.C., Sharma, K.V. & Shahrani,
A. 2012. Performance evaluation of
evacuated tube solar collector using water-based titanium oxide
(TiO2) nanofluid. Journal of Mechanical Engineering and
Sciences (JMES) 3: 301-310.
Maxwell,
J.C. 1954. Summary for policymakers. A Treatise on
Electricity and Magnetism 53(9): 1-30. doi:10.1017/
CBO9781107415324.004.
O'Connell,
M.J. 2006. Carbon Nanotubes: Properties and Applications.
Boca Raton: CRC Press.
Palaniraj,
A. & Jayaraman, V. 2011. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering 106(1):
1-12. doi:10.1016/j. jfoodeng.2011.03.035.
Ponmani, S,, William, J.K.M., Samuel, R., Nagarajan,
R. & Sangwai, J.S. 2014. Formation and
characterization of thermal and electrical properties of CuO and ZnO nanofluids in
xanthan gum. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 443: 37-43. doi:10.1016/j.
colsurfa.2013.10.048.
Qi,
L. 2006. Synthesis of inorganic nanostructures in reverse
Micelles. Encyclopedia of Surface and Colloid Science 2:
6183-6207. doi:10.1081/E-ESCS-120023694.
Rashmi,
W., Ismail, A.F., Sopyan, I., Jameel,
A.T., Yusof, F., Khalid, M. & Mubarak, N.M. 2011. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. Journal of Experimental Nanoscience 6(6): 567-579.
doi:10.1080/17458080.2010.487229.
Wang,
X.Q. & Mujumdar, A.S. 2007. Heat transfer characteristics of nanofluids: A review. International Journal of
Thermal Sciences 46(1): 1-19. doi:10.1016/j.ijthermalsci.2006.06.010.
Wang,
X., Xu, X. & Choi, S.U.S. 1999. Thermal conductivity of nanoparticle-fluid mixture. Journal
of Thermophysics and Heat Transfer 13(4):
474-480.
Yu,
W., France, D.M. Routbort, J.L. & Choi, S.U.S.
2008. Review and comparison of nanofluid thermal
conductivity and heat transfer enhancements. Heat Transfer Engineering 29(5):
432-460. doi:10.1080/01457630701850851.
Zhang,
X., Gu, H. & Fujii, M. 2007. Effective thermal
conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental
Thermal and Fluid Science 31(6): 593-599. doi:10.1016/j.
expthermflusci.2006.06.009.
*Pengarang untuk surat-menyurat;
email: Saba.rashidi604@gmail.com
|