Sains Malaysiana 46(7)(2017): 1011–1016
http://dx.doi.org/10.17576/jsm-2017-4607-01
Synthesis of
Large-Area Few-Layer Graphene by Open-Flame Deposition
(Sintesis Grafin Kawasan Lebar Pelbagai Lapisan melalui Pemendapan Nyalaan
Api Terbuka)
EDHUAN ISMAIL1, MOHD SHUKRI SIRAT1, ABD. MALEK ABDUL HAMID1, RAIHAN OTHMAN1, MOHD ASYADI AZAM MOHD ABID2 & MOHD HANAFI ANI1*
1Department of
Manufacturing and Materials Engineering, International Islamic University
Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia
2Engineering Materials
Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM),
Durian Tunggal, 76100 Melaka, Malaysia
Diserahkan: 14 Oktober 2016/Diterima: 13 Januari
2017
ABSTRACT
Various production methods
have been developed for graphene production, but each of them falls short in
either the economic or quality aspect. In this paper, we present the flame
deposition method, a modified chemical vapor deposition (CVD)
that uses an open-flame. In this method, resulting carbon deposits were found
to be graphitic in nature, thereby suggesting multilayer graphene growth in a
very short reaction time of 5 min. Furthermore, the deposits were transferred
onto a cyanoacrylate plastic substrate and its sheet resistance was measured to
be 81 ohm/square. The results showed that open-flame deposition exhibits high
potential for low-cost, low-energy and high-quality production of graphene.
Keywords: Chemical
vapor deposition (CVD); graphene; open-flame deposition;
plasma; sheet resistance
ABSTRAK
Pelbagai kaedah telah digunakan untuk menghasilkan grafin namun setiap kaedah mempunyai kelemahan sama ada daripada aspek ekonomi atau kualiti.
Di sini kami melaporkan kaedah pemendapan wap kimia yang diubah suai dengan kaedah nyalaan api terbuka. Enapan karbon yang terhasil dikenal pasti bersifat grafitik seterusnya mencadangkan pertumbuhan grafin berlapis dalam masa tindak balas yang singkat iaitu 5 min. Kemudian, enapan karbon itu dipindahkan ke atas substrat plastik sianoakrilat dan lapisan rintangan diukur dan nilai rintangannya ialah 81 ohm/persegi. Keputusan menunjukkan bahawa pemendapan api terbuka berpotensi untuk mengeluarkan grafin berkualiti tinggi dengan kos dan penggunaan tenaga yang rendah.
Kata kunci: Grafin; pemendapan nyalaan api terbuka; pemendapan wap kimia (CVD); plasma; rintangan lapisan
RUJUKAN
Avouris,
P. & Freitag, M. 2014. Graphene photonics, plasmonics, and
optoelectronics. IEEE Journal of Selected Topics in Quantum
Electronics 20(1): 72-83. Nature Publishing Group.
Bae,
S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Jayakumar Balakrishnan, Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J.,
Kim, K.S., Özyilmaz, B., Ahn,
J.H., Hong, B.H. & Iijima, S. 2010. Roll-to-roll
production of 30-inch graphene films for transparent electrodes. Nature
Nanotechnology 5(8): 574-578.
Cançado,
L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O.,
Lombardo, A., Kulmala, T.S. & Ferrari, A.C. 2011. Quantifying defects in graphene via Raman spectroscopy at different
excitation energies. Nano Letters 11(8): 3190-3196.
Chan,
S-H., Chen, S-H., Lin, W-T., Li, M-C., Lin, Y-C. & Kuo, C-C. 2013. Low-temperature synthesis of graphene on Cu
using plasma-assisted thermal chemical vapor deposition. Nanoscale Research
Letters 8(1): 285.
Chen,
C-C., Kuo, C-J., Liao, C-D., Chang, C-F., Tseng,
C-A., Liu, C-R. & Chen, Y-T. 2015. Growth of
large-area graphene single crystals in confined reaction space with
diffusion-driven chemical vapor deposition. Chemistry of Materials 27(18):
6249-6258.
Costa,
S.D., Righi, A., Fantini,
C., Hao, Y., Magnuson, C., Colombo, L., Ruoff, R.S. & Pimenta, M.A.
2012. Resonant Raman spectroscopy of graphene grown on copper
substrates. Solid State Communications 152(15): 1317-1320.
Emtsev,
K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg,
G.L., Ley, L., McChesney, J.L., Ohta,
T., Reshanov, S.A., Röhrl,
J., Rotenberg, E., Schmid, A.K., Waldmann,
D., Weber, H.B. & Seyller, T. 2009. Towards wafer-size graphene layers by atmospheric pressure
graphitization of silicon carbide. Nature Materials 8(3):
203-207.
Geim,
A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6(3): 183-191.
Jacob,
M.V., Rawat, R.S., Ouyang, B., Bazaka,
K., Sakthi Kumar, D., Taguchi, D., Iwamoto, M., Neupane, R. & Varghese, O.K. 2015. Catalyst free plasma enhanced growth of graphene from sustainable sources. Nano
Letters 15(9): 5702-5708.
Kalbacova,
M., Broz, A., Kong, J. & Kalbac, M. 2010. Graphene substrates promote adherence of human osteoblasts and mesenchymal
stromal cells. Carbon 48(15): 4323-4329.
Lambert,
T.N., Luhrs, C.C., Chavez, C.A., Wakeland, S.,
Brumbach, M.T. & Alam, T.M. 2010. Graphite oxide as a precursor for the synthesis of disordered graphenes using the aerosol-through-plasma method. Carbon 48(14): 4081-4089.
Li,
X., Cai, W., An, J., Kim,
S., Nah, J., Yang, D., Piner, R., Velamakanni,
A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L.
& Ruoff, R.S. 2009. Large area synthesis of high
quality and uniform graphene films on copper foils. Science 324(5932):
1312-1314.
Li,
Z., Zhu, H., Xie, D., Wang, K., Cao, A., Wei, J., Li,
X., Fan, L. & Wu, D. 2011. Flame synthesis of few-layered
graphene/ graphite films. Chemical Communications 47(12): 3520.
Liu,
H., Zhu, S. & Jiang, W. 2016. Rapid flame synthesis of multilayer graphene on SiO2/Si
substrate. Journal of Materials Science: Materials in Electronics 27(3):
2795- 2799.
Martins,
L.G.P., Song, Y., Zeng, T., Dresselhaus, M.S., Kong,
J. & Araujo, P.T. 2013. Direct
transfer of graphene onto flexible substrates. Proceedings of the
National Academy of Sciences 110(44): 17762-17767.
Memon,
N.K., Tse, S.D., Al-Sharab,
J.F., Yamaguchi, H., Goncalves, A.M.B., Kear, B.H., Jaluria, Y., Andrei,
E.Y. & Chhowal, M. 2011. Flame
synthesis of graphene films in open environments. Carbon 49(15):
5064-5070.
Murakami,
K., Tanaka, S., Hirukawa, A., Hiyama,
T., Kuwajima, T., Kano, E., Takeguchi,
M. & Fujita, J-I. 2015. Direct synthesis of large area graphene on
insulating substrate by gallium vapor-assisted chemical vapor deposition. Applied Physics Letters 106: 093112.
Novoselov,
K.S., Fal’ko, V.I., Colombo, L., Gellert,
P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for graphene. Nature 490(7419): 192-200.
Peigney, A.,
Laurent, Ch., Flahaut, E., Bacsa,
R.R. & Rousset, A. 2001. Specific surface area of carbon nanotubes and bundles of
carbon nanotubes. Carbon 39(4): 507-514.
Polat,
E.O., Balci, O., Kakenov,
N., Uzlu, H.B., Kocabas, C.
& Ravinder Dahiya. 2015. Synthesis of large area graphene for high performance in flexible
optoelectronic devices. Scientific Reports. www.nature.com/scientificreports. pp. 1-10.
Vlassiouk, I., Regmi,
M., Fulvio, P., Dai, S., Datskos,
P., Eres, G., Smirnov, S., Vlassiouk,
G.E.I., Regmi, M., Fulvio,
P., Dai, S. & Datskos, P. 2011. Role of hydrogen in chemical vapor deposition growth of large
single-crystal graphene. ACS Nano 5(7): 6069-6076.
Wang,
W., Peng, Q., Dai, Y., Qian, Z. & Liu, S. 2016. Temperature
dependence of Raman spectra of graphene on copper foil substrate. Journal
of Materials Science: Materials in Electronics 27(4): 3888-3893.
Wood,
J.D., Schmucker, S.W., Lyons, A.S., Pop, E. & Lyding, J.W. 2011. Effects of
polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Letters 11(11): 4547-4554.
Zhang,
X., Wang, L., Xin, J., Yakobson, B.I. & Ding, F.
2014. Role of hydrogen in graphene chemical vapor deposition growth
on a copper surface. Journal of the American Chemical Society 136(8):
3040-3047.
Zhao, P., Kim, S.,
Chen, X., Einarsson, E., Wang, M., Song, Y., Wang,
H., Chiashi, S., Xiang, R. & Maruyama, S. 2014. Equilibrium chemical vapor deposition growth of bernal-stacked
bilayer graphene. ACS Nano 8(11): 11631-11638.
*Pengarang untuk surat-menyurat; email: mhanafi@iium.edu.my
|