Sains Malaysiana 45(8)(2016): 1243–1252

Fabrikasi GPS Antena menggunakan Bahan Zink Aluminat Berstruktur Nano didopkan dengan Kobalt

(Fabrication of GPS Antenna using Zinc Aluminate (ZnAl2O4) Nanostructured Material Doped with Cobalt)

 

WAN NASARUDIN WAN JALAL1,2, HUDA ABDULLAH1*, MOHD SYAFIQ ZULFAKAR1 & BADARIAH BAIS1

 

1Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2National Dual Training System (NDTS), Department of Skills Development, Level 7 - 8, Block D4, Complexs D, Federal Government Administrative Centre, 62530 Putrajaya, Federal Territory,

Malaysia

 

Diserahkan: 20 April 2015/Diterima: 12 Ogos 2015

 

ABSTRAK

Kaedah sol gel digunakan untuk menghasilkan filem nipis CoxZn(1-x)Al2O4 berstruktur nano pada suhu 600°C. Corak pembelauan XRD menunjukkan pembentukan struktur tunggal spinel ZnAl2O4 dan CoAl2O4. Saiz hablur dan ketumpatan bahan berkurangan apabila kepekatan bahan dopan Co bertambah, iaitu masing-masing daripada 19.52 kepada 10.39 nm dan 4.609 kepada 4.585 g/cm3. Parameter kekisi pula meningkat daripada 8.085 kepada 8.098 Å apabila Co meningkat. Analisis FTIR menunjukkan ikatan ZnO, Co dan Al-O berlaku antara 487 hingga 550 cm-1, manakala ikatan spinel bagi ZnAl2O4 dan CoAl2O4 pula terbentuk pada 655 cm-1. Imej AFM menunjukkan kekasaran permukaan menurun apabila Co bertambah iaitu daripada 30.21 nm (×=0.00) kepada 14.83 nm (×=0.30). Nilai pemalar dielektrik (εr) menunjukkan penurunan secara linear apabila Co meningkat iaitu daripada 8.53 kepada 7.31.  Seterusnya, GPS antena difabrikasi menggunakan sampel CoxZn(1-x)Al2O4. Prestasi dan frekuensi operasi GPS antena diukur menggunakan penganalisis rangkaian siri PNA pada frekuensi kenaan 1-2 GHz. Analisis mendapati antena beroperasi pada frekuensi 1.570 Ghz dengan kerungian pulangan -15.6 hingga -21.2 dB dan lebar jalurnya pula adalah 80 hingga 315 MHz. Kesemua antena yang telah difabrikasi memenuhi keperluan minimum antena untuk beroperasi pada aplikasi GPS.

 

Kata kunci: Antena GPS; Co/ZnAl2O4, FTIR; pemalar dielektrik; struktur nano

 

 

ABSTRACT

The CoxZn(1-x)Al2O4 thin films was synthesized by the sol-gel method at 600°C. The XRD patterns displayed the characteristic peaks of the solid spinel structure and were observed as ZnAl2O4 or CoAl2O4 system. The addition of Co decreased the crystallite size and ceramic density from 19.52 to 10.39 nm and 4.609 to 4.585 g/cm3, respectively. The lattice parameter increase initially from 8.085 to 8.098 Å, as Co increased. The FTIR analysis showed that the formation of ZnO, Co and Al-O occurred at 487 and 550 cm−1, while ZnAl2O4 and CoAl2O4 spinel bonds occurred at 655 cm−1. The AFM images showed the surface roughness decreased as Co increased, from 30.21 nm (×=0.00) to 14.83 nm (×=0.30). As the Co content increased, the dielectric constant (εr) values decreased linearly from 8.53 to 7.31. Finally, GPS patch antennae were successfully fabricated using the CoxZn(1-x)Al2O4 material. The performance and operating frequencies of GPS patch antennas were determined from frequencies of 1-2 GHz using PNA series network analyzer. The results showed that the patch antenna resonates at frequency of 1.570 GHz and produces a return loss bandwidth between -15.6 and -21.2 dB, while their bandwidth between 80 to 315 MHz to ensure full functionality. The all fabricated antennas meet the minimum requirements of GPS applications.

Keywords: Co/ZnAl2O4; dielectric constant; FTIR; GPS antennas; nanostructures

RUJUKAN

Abdelaziz, A.A. & Nashaat, D.M. 2007. Compact GPS microstrip patch antenna. MILCOM, Orlando, Florida, 29-31 October.

Abdullah, H., Jalal, W., Zulfakar, M., Islam, M., Bais, B. & Shaari, S. 2015. Characterization of TixZn(1-X)Al2O4 thin films by sol-gel method for GPS patch antennae. Journal of the Korean Physical Society 66(1): 41-45.

Abdullah, H., Jalal, W. & Zulfakar, M. 2014. Miniaturization of GPS patch antennas based on novel dielectric ceramics Zn(1−X)MgxAl2O4 by sol-gel method. Journal of Sol-Gel Science and Technology 69(2): 429-440.

Abdullah, H., Zulfakar, M.S., Jalal, W.N.W., Islam, M.T. & Shaari, S. 2014. Synthesis and fabrication of (1X) ZnAl2O4– Xsio2 thin films to be applied as patch antennas. Journal of Sol-Gel Science and Technology 69(1): 183-192.

Balanis, C.A. 2005. Antenna Theory Analysis and Design. 3rd. ed. Hoboken, New Jersey: John Wiley & Sons, Inc.

Beier, M.J., Hansen, T.W. & Grunwaldt, J.D. 2009.  Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of Ceria. Journal of Catalysis 266(2): 320-330.

Bian, J., Wang, L. & Yuan, L. 2009. Microwave dielectric properties of Li2+Xti1−4xnb3xo3 (0 ≤ X ≤ 0.1). Materials Science and Engineering: B 164(2): 96-100.

Bian, J.J., Yan, K. & Dong, Y.F. 2008. Microwave dielectric properties of A1−3x/2lax(Mg1/2w1/2)O3 (a = Ba, Sr, Ca; 0.0 ≤ X ≤ 0.05) double Perovskites. Materials Science and Engineering: B 147(1): 27-34.

Breed, G. 2009. The fundamentals of patch antenna design and performance. High Frequency Electronics 8(3): 48-52.

Chandradass, J. & Balasubramanian, M. 2005. Sol-gel processing of alumina-zirconia minispheres. Ceramics International 31(5): 743-748.

Chen, Y.C. 2011. Microwave dielectric properties of (Mg(1-X) Cox)2sn04 ceramics for application in dual-band inverted-E-shaped monopole antenna. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 58(12): 2531-2538.

Chen, Z., Shi, E., Li, W., Zheng, Y. & Zhong, W. 2002. Hydrothermal synthesis and optical property of nano-sized coal 2O4 pigment. Materials Letters 55(5): 281-284.

Chroma, M., Pinkas, J., Pakutinskiene, I., Beganskiene, A. & Kareiva, A. 2005. Processing and characterization of sol-gel fabricated mixed metal aluminates. Ceramics International 31(8): 1123-1130.

de Souza, L.K.C., Zamian, J.R., da Rocha Filho, G.N., Soledade, L.E.B., Dos Santos, I.M.G., Souza, A.G., Scheller, T., Angélica, R.S. & Da Costa, C.E.F. 2009. Blue pigments based on CoxZn(1−X)Al2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments 81(3): 187-192.

Dhak, D. & Pramanik, P. 2006. Particle size comparison of soft-chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. Journal of the American Ceramic Society 89(3): 1014-1021.

El All, S.A., Fawzy, Y. & Radwan, R. 2007. Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation. Journal of Physics D: Applied Physics 40(18): 5707.

Huang, C.L., Chen, J.Y. & Tseng, Y.W. 2010. High-dielectric-constant and low-loss microwave dielectric in the Ca(Mg1/3ta2/3 )O3–(Ca0.8sr0.2)TiO3 solid solution system. Materials Science and Engineering B 167: 142-146.

Huang, C.L., Tseng, C.F., Yang, W.R. & Yang, T.J. 2008. High dielectric constant and low loss microwave dielectric in the (1−X) Nd (Zn1/2ti1/2) O3–XsrtiO3 system with a zero temperature coefficient of resonant frequency. Journal of the American Ceramic Society 91(7): 2201-2204.

Huang, C.L., Yang, T.J. & Huang, C.C. 2009. Low dielectric loss ceramics in the Znal2O4–TiO2 system as a Τf compensator. Journal of the American Ceramic Society 92(1): 119-124.

Ianoş, R., Lazău, R., Lazău, I. & Păcurariu, C. 2012. Chemical oxidation of residual carbon from ZnAl2O4 powders prepared by combustion synthesis. Journal of the European Ceramic Society 32(8): 1605-1611.

Iqbal, M. J., Ismail, B., Rentenberger, C. & Ipser, H. 2011. Modification of the Physical Properties of Semiconducting MgAl2O4 by Doping with a Binary Mixture of Co and Zn Ions. Materials Research Bulletin 46(12): 2271-2277.

Ivill, M., Pearton, S., Rawal, S., Leu, L., Sadik, P., Das, R., Hebard, A., Chisholm, M., Budai, J. D. & Norton, D.P. 2008. Structure and magnetism of cobalt-doped Zno thin films. New Journal of Physics 10(6): 065002.

Jalal, W., Abdullah, H., Zulfakar, M., Islam, M., Shaari, S. & Bais, B. 2015. Synthesis and fabrication of GPS patch antennas by using Zn(1−x)Ti X Al2O4 thin films. Journal of Sol-Gel Science and Technology 74(2): 566-574.

Jalal, W., Abdullah, H., Zulfakar, M., Islam, M., Bais, B. & Shaari, S. 2014a. GPS patch antenna performance by modification of Zn(1−X)CaxAl2O4-based microwave dielectric ceramics. Journal of Sol-Gel Science and Technology 71(3): 477-489.

Jalal, W.N.W., Abdullah, H., Zulfakar, M.S., Shaari, S., Islam, M. & Bais, B. 2014b. Characteristics of nanostructured CaxZn(1-X) Al2O4 thin films prepared by sol-gel method for GPS patch antennas. Sains Malaysiana 43(6): 833-842.

Jamal, E., Kumar, D. & Anantharaman, M.R. 2011. On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bulletin of Materials Science 34(2): 251-259.

James, J.R. & Hall, P.S. 1989. Handbook of Microstrip Antennas. London: P. Peregrinus.

Koops, C.G. 1951. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical Review 83(1): 121-124.

Kumar, R.T., Selvam, N.C.S., Ragupathi, C., Kennedy, L.J. & Vijaya, J.J. 2012. Synthesis, characterization and performance of porous Sr(Ii)-added Znal2o4 nanomaterials for optical and catalytic applications. Powder Technology 224: 147-154.

Kurajica, S., Tkalčec, E., Gržeta, B., Iveković, D., Mandić, V., Popović, J. & Kranzelić, D. 2011. Evolution of structural and optical properties in the course of thermal evolution of sol-gel derived cobalt-doped Gahnite. Journal of Alloys and Compounds 509(7): 3223-3228.

Lei, W., Lu, W.Z., Liu, D. & Zhu, J.H. 2009. Phase evolution and microwave dielectric properties of (1−X)ZnAl2O4−Xmg2TiO4 ceramics. Journal of the American Ceramic Society 92(1): 105-109.

Lei, W., Lu, W.Z., Wang, X.H., Liang, F. & Wang, J. 2011. Phase composition and microwave dielectric properties of ZnAl2O4- CO2TiO4 low-permittivity ceramics with high quality factor. Journal of the American Ceramic Society 94(1): 20-23.

Li, R., Pan, B., Laskar, J. & Tentzeris, M.M. 2007. A compact broadband planar antenna for GPS, Dcs-1800, Imt-2000, and Wlan applications. IEEE Antennas and Wireless Propagation Letters 6: 25-27.

Lo, Y.T. & Lee, S.W. 1993. Antenna Handbook: Applications. New York: Chapman & Hall.

Park, J.H., Nahm, S. & Park, J.G. 2012.  Crystal structure and microwave dielectric properties of (1-X) Znta2O6-XtiO2 Ceramics. Journal of Alloys and Compounds 537: 221-226.

Peng, Z., Fu, X., Ge, H., Fu, Z., Wang, C., Qi, L. & Miao, H. 2011. Effect of Pr 3+ doping on magnetic and dielectric properties of Ni-Zn ferrites by ‘one-step synthesis’. Journal of Magnetism and Magnetic Materials 323(20): 2513-2518.

Sankaralingam, S. & Gupta, B. 2010.  Development of textile antennas for body wearable applications and investigations on their performance under Bent conditions. Progress In Electromagnetics Research B 22: 53-71.

Sotoudeh, H.H., Joseph, C., Sooseok, O., Ju-Ung, J., Noh- Joon, P. & Dae-Hee, P. 2009. Design of a high performance patch antenna for GPS communication systems. Journal of Electrical Engineering & Technology 4(2): 282-286.

Souza, L.K.C.D., Zamian, J.R., Filho, G.N.D.R., Soledade, L.E.B., Santos, I.M.G.D., Souza, A.G., Scheller, T., Lica, R.M.S.A. & Costa, C.E.F.D. 2009. Blue pigments based on CoxZn1-XAl2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments 81: 187-192.

Surendran, K. P., Santha, N., Mohanan, P. & Sebastian, M. T. 2004. Temperature Stable Low Loss Ceramic Dielectrics in (1-X)ZnAl2O4-XTiO2 System for Microwave Substrate Applications. The European Physical Journal B - Condensed Matter and Complex Systems 41(3): 301-306.

Tareev, B. 1975. Physics of Dielectric Materials. Moscow: Mir Publication.

Tian, X., Wan, L., Pan, K., Tian, C., Fu, H. & Shi, K. 2009. Facile synthesis of mesoporous ZnAl2O4 thin films through the evaporation-induced self-assembly method. Journal of Alloys and Compounds 488(1): 320-324.

Torkian, L., Daghighi, M. & Boorboor, Z. 2013. Simple and efficient rout for synthesis of spinel nanopigments. Journal of Chemistry 2013: Article ID: 694531.

Tsai, W.C., Liou, Y.H. & Liou, Y.C. 2012. Microwave dielectric properties of MgAl2O4-CoAl2O4 spinel compounds prepared by reaction-sintering process. Materials Science and Engineering: B 177(13): 1133-1137.

Ummartyotin, S., Sangngern, S., Kaewvilai, A., Koonsaeng, N., Manuspiya, H. & Laobuthee, A. 2013. Cobalt aluminate (CoAl2O4) derived from Co-Al-Tea complex and its dielectric behaviors. Journal of Sustainable Energy & Environment 1(1): 31-37.

Visinescu, D., Paraschiv, C., Ianculescu, A., Jurca, B., Vasile, B. & Carp, O. 2010. The environmentally benign synthesis of nanosized CoxZn1-XAl2O4 blue pigments. Dyes and Pigments 87(2): 125-131.

Wagner, K.W. 1913. Zur theorie der unvollkommenen dielektrika. Annalen der Physik 345(5): 817-855.

Wan Jalal, W.N., Abdullah, H. & Zulfakar, M.S. 2014.  Effect of Zn site for Ca substitution on optical and microwave dielectric properties of ZnAl2O4 thin films by sol gel method. Advances in Materials Science and Engineering 2014: Article ID: 619024.

Wan Jalal, W.N., Abdullah, H., Zulfakar, M.S., Shaari, S. & Islam, M.T. 2013. Characterization and dielectric properties of novel dielectric ceramics CaxZn(1-X)Al2O4 for GPS patch antennas. International Journal of Applied Ceramic Technology 12(S1): E32-E42.

Wang, X., Lei, W. & Lu, W. 2009. Novel ZnAl2O4-based microwave dielectric ceramics with machinable property and its application for GPS antenna. Ferroelectrics 388(1): 80-87.

Wee, F.H., Malek, M.F.B.A., Sreekantan, S., Al-Amani, A., Ghani, F. & You, K.Y. 2011. Investigation of the characteristics of barium strontium titanate (Bst) dielectric resonator ceramic loaded on array antennas. Progress In Electromagnetics Research 121: 181-213.

Wu, J.M., Lu, W.Z., Lei, W. & Wang, X.C. 2011. Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting. Materials Research Bulletin 46(9): 1485-1489.

Zawadzki, M., Staszak, W., López Suárez, F.E., Illán Gómez, M.J. & Bueno López, A. 2009. Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels. Applied Catalysis A: General 371(1-2): 92-98.

Zhang, H., Fang, L., Elsebrock, R. & Yuan, R.Z. 2005. Crystal structure and microwave dielectric properties of a new A6b5o18-Type cationdDeficient Perovskite Ba3la3ti4nbo18. Materials Chemistry and Physics 93(2-3): 450-454.

 

 

*Pengarang untuk surat-menyurat; email: huda.abdullah@ukm.edu.my

 

 

 

sebelumnya