Sains Malaysiana 45(8)(2016):
1235–1242
Effect of HNTs Addition in the Injection
Moulded Thermoplastic Polyurethane Matrix on the Mechanical and
Thermal Properties
(Kesan Penambahan HNTs
dalam Pengacuan Suntikan Matriks Termoplastik Poliuretana ke atas
Sifat Mekanik dan Terma)
TAYSER SUMER
GAAZ1,2*,
ABU
BAKAR
SULONG1
& ABDUL AMIR H. KADHUM2
1Department of Mechanical & Materials
Engineering, Faculty of Engineering & Built Environment
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Department of Chemical & Process
Engineering, Faculty of Engineering & Built Environment
Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan, Malaysia
3Department of Equipment’s &
Machines Engineering, Technical College Al-Musaib
Al-Furat Al-Awsat Technical University,
Iraq
Diserahkan: 20 April 2015/Diterima:
20 November 2015
ABSTRACT
The additions of nanofillers
are able to enhance the mechanical properties of neat polymer matrix.
There were few researchers reported on the mechanical properties
of halloysite nanotubes reinforced thermoplastic polyurethane (HNTs-TPU)
nanocomposites formed through casting and compression moulding.
However, fewer researchers also reported study on HNTs-TPU formed
through injection molding. The main objective of this paper was
to study the effect of HNTs addition of TPU matrix on mechanical and physical
properties. HNTs were mixed in TPU matrix
using a brabender mixer with concentration ranging from 0.5 to 7
wt. % HNT
loading (at specific mixing speed, mixing time and
mixing temperature). Injection moulding was carried out to form
tensile bar shaped specimens with specific moulding parameters (injection
temperature, injection time and injection pressure). Increment around
35% of tensile strength of the specimen was found at 1 wt. % HNT loading concentration which exhibited the value of 24.3
MPa, compared to neat TPU; the best mixing. The Young’s modulus
was increased with increasing HNTs loading. The elongation decreased
with increasing HNTs loading. The FESEM results
showed that HNTs were dispersed in TPU matrix.
The TGA results showed that the addition of 1 wt. % HNTs
enhanced the thermal properties. It can be concluded that HNTs-TPU
has improved tensile and physical properties compared
with neat TPU due
to the addition of nanofiller.
Keywords: Halloysite nanotubes;
mechanical properties; nanocomposites; physical properties; thermoplastic
polyurethane
ABSTRAK
Penambahan nano pengisi dapat
meningkatkan sifat mekanik matriks polimer tulen. Terdapat beberapa
penyelidik telah melaporkan mengenai sifat mekanik tiub nano haloisit
diperkuat nanokomposit termoplastik poliuretana (HNTs-TPU)
yang dibentuk melalui pengacuan tuangan dan mampatan. Walau bagaimanapun,
hanya sedikit penyelidik yang mengkaji tentang HNTs-TPU yang
dibentuk melalui pengacuan suntikan. Objektif utama penyelidikan
ini ialah mengkaji kesan penambahan HNTs matriks TPU ke
atas sifat mekanik dan fizikal. HNTs telah dicampurkan dalam matriks
TPU menggunakan pembancuh brabender dengan kepekatan antara
0.5 hingga 7 % bt. Pembebanan HNT (pada kelajuan, masa dan suhu
pencampuran yang telah ditetapkan). Pengacuan suntikan telah dijalankan
untuk membentuk spesimen berbentuk bar tegangan dengan parameter
pengacuan tertentu (suhu, masa dan suntikan pengacuan). Pertambahan
nilai kekuatan tegangan spesimen sebanyak 35% diperoleh pada 1 %
bt. kepekatan pembebanan HNT
dengan mengeluarkan nilai 24.3 MPa berbanding TPU tulen; campuran terbaik. Nilai
modulus Young meningkat apabila pembebanan HNTs
meningkat. Pemanjangan menyusut dengan peningkatkan pembebanan HNTs.
Keputusan FESEM menunjukkan bahawa HNTs
meresap ke dalam matriks TPU. Keputusan analisis TGA
menunjukkan bahawa penambahan 1 % bt. HNTs telah meningkatkan sifat terma.
Oleh itu, dapat disimpulkan bahawa HNTs-TPU telah
menambah baik sifat tegangan dan fizikal berbanding dengan TPU tulen
berdasarkan kesan penambahan nano pengisi.
Kata kunci: Nano komposit; sifat fizikal; sifat mekanik; termoplastik
poliuretana; tiub nano haloisit
RUJUKAN
ASTM. 1998. ASTM
D-638 type V-Standard Test Method for Tensile Properties of Plastics.
Barick, A.K. &
Tripathy, D.K. 2011. Preparation, characterization and properties
of acid functionalized multi-walled carbon nanotube reinforced thermoplastic
polyurethane nanocomposites. Materials Science and Engineering:
B 176: 1435-1447.
Bian, J., Lin,
H.L., He, F.X., Wei, X.W., Chang, I.T. & Sancaktar, E. 2013.
Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic
polyurethane nanocomposites: Effects of filler on morphology, mechanical,
thermal and conductive properties. Composites Part A: Applied
Science and Manufacturing 47: 72-82.
Boubakri, A., Haddar,
N., Elleuch, K. & Bienvenu, Y. 2010. Impact of aging conditions
on mechanical properties of thermoplastic polyurethane. Materials
& Design 31: 4194- 4201.
Boubakri, A., Elleuch,
K., Guermazi, N. & Ayedi, H. 2009. Investigations on hygrothermal
aging of thermoplastic polyurethane material. Materials &
Design 30: 3958-3965.
Cheng, W., Dong,
S. & Wang, E. 2002. Colloid chemical approach to nanoelectrode
ensembles with highly controllable active area fraction. Analytical
Chemistry 74: 3599-3604.
Deng, S., Zhang,
J. & Ye, L. 2009. Halloysite-epoxy nanocomposites with improved
particle dispersion through ball mill homogenisation and chemical
treatments. Composites Science and Technology 69: 2497-2505.
Du, M., Guo, B.
& Jia, D. 2010. Newly emerging applications of halloysite nanotubes:
a review. Polymer International 59: 574-582.
Gholami, M. &
Mir Mohamad Sadeghi, G. 2015. Investigating the effects of chemical
modification of clay nanoparticles on thermal degradation and mechanical
properties of TPU/nanoclay composites. Journal of Particle Science
& Technology 1: 1-11.
Guo, B., Zou, Q.,
Lei, Y., Du, M., Liu, M. & Jia, D. 2009. Crystallization behavior
of polyamide 6/halloysite nanotubes nanocomposites. Thermochimica
Acta 484: 48-56.
Ha, C.S., Kim,
Y., Lee, W.K., Cho, W.J. & Kim, Y. 1998. Fracture toughness
and properties of plasticized PVC and thermoplastic polyurethane
blends. Polymer 39: 4765-4772.
Ismail, H., Pasbakhsh,
P., Fauzi, M.A. & Bakar, A.A. 2008. Morphological, thermal and
tensile properties of halloysite nanotubes filled ethylene propylene
diene monomer (EPDM) nanocomposites. Polymer Testing 27:
841-850.
Joussein, E., Petit,
S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. 2005.
Halloysite clay minerals-a review. Clay Minerals 40: 383-426.
Kelly, H., Deasy,
P., Ziaka, E. & Claffey, N. 2004. Formulation and preliminary
in vivo dog studies of a novel drug delivery system for the
treatment of periodontitis. International Journal of Pharmaceutics
274: 167-183.
Lecouvet, B., Gutierrez,
J., Sclavons, M. & Bailly, C. 2011a. Structure-property relationships
in polyamide 12/halloysite nanotube nanocomposites. Polymer Degradation
and Stability 96: 226-235.
Lecouvet, B., Sclavons,
M., Bourbigot, S., Devaux, J. & Bailly, C. 2011b. Water-assisted
extrusion as a novel processing route to prepare polypropylene/halloysite
nanotube nanocomposites: structure and properties. Polymer 52:
4284-4295.
Li, C., Han, J.,
Huang, Q., Xu, H., Tao, J. & Li, X. 2012. Microstructure development
of thermoplastic polyurethanes under compression: The influence
from first-order structure to aggregation structure and a structural
optimization. Polymer 53: 1138-1147.
Liu, C., Luo, Y.F.,
Jia, Z.X., Zhong, B.C., Li, S.Q., Guo, B.C. & Jia, D.M. 2011.
Enhancement of mechanical properties of poly (vinyl chloride) with
polymethyl methacrylate-grafted halloysite nanotube. Express
Polym. Lett. 5: 591-603.
Marini, J., Pollet,
E., Averous, L. & Bretas, R.E.S. 2014. Elaboration and properties
of novel biobased nanocomposites with halloysite nanotubes and thermoplastic
polyurethane from dimerized fatty acids. Polymer 55: 5226-5234.
Marney, D.C.O.,
Russell, L.J., Wu, D.Y., Nguyen, T., Cramm, D., Rigopoulos, N.,
Wright, N & Greaves, M. 2008. The suitability of halloysite
nanotubes as a fire retardant for nylon 6. Polymer Degradation
and Stability 93(10): 1971-1978.
Prashantha,
K., Lacrampe, M. & Krawczak, P. 2011a. Processing and characterization
of halloysite nanotubes filled polypropylene nanocomposites based
on a masterbatch route: effect of halloysites treatment on structural
and mechanical properties. Express Polymer Letters 5: 295-307.
Prashantha, K., Schmitt, H., Lacrampe,
M. & Krawczak, P. 2011b. Mechanical behaviour and essential
work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites.
Composites Science and Technology 71: 1859-1866.
Price, R.R., Gaber, B.P. & Lvov,
Y. 2001. In-vitro release characteristics of tetracycline
HCl, khellin and nicotinamide adenine dineculeotide from halloysite;
a cylindrical mineral. Journal of Microencapsulation 18:
713-722.
Shchukin, D., Price, R., Sukhorukov,
G. & Lvov, Y. 2005. Biomimetic synthesis of vaterite in the
interior of clay nanotubules. Small 1: 510-513.
Wang X. & Luo, X. 2004. A polymer
network based on thermoplastic polyurethane and ethylene-propylene-diene
elastomer via melt blending: morphology, mechanical properties,
and rheology. European Polymer Journal 40: 2391-2399.
Yilgor, I., Yilgor, E., Guler, I.G.,
Ward, T.C. & Wilkes, G.L. 2006. FTIR investigation of the influence
of diisocyanate symmetry on the morphology development in model
segmented polyurethanes. Polymer 47: 4105-4114.
Zhou, W.Y., Guo, B., Liu, M., Liao,
R., Rabie, A.B.M. & Jia, D. 2010. Poly (vinyl alcohol)/halloysite nanotubes bionanocomposite
films: properties and in vitro osteoblasts and fibroblasts
response. Journal of Biomedical Materials Research Part A 93:
1574-1587.
*Pengarang untuk surat
menyurat; email: taysersumer@gmail.com
|