Sains Malaysiana 45(8)(2016):
1213–1219
The Effect of Al(NO3)3 Concentration
on the Formation of AuNPs using Low Temperature Hydrothermal Reaction
for Memory Application
(Kesan Kepekatan Al(NO3)3 ke atas Pembentukan
AuNPs dengan Menggunakan Tindak Balas Hidroterma Suhu Rendah untuk
Aplikasi Ingatan)
S.A. NG1,
K.A.
RAZAK,1,2*,
K.Y.
CHEONG1,
K.C.
AW3
1School of Materials
and Mineral Resources Engineering, Universiti Sains Malaysia, 14300
Nibong Tebal, Pulau Pinang, Malaysia
2NanoBiotechnology
Research and Innovation, INFORMM, Universiti Sains Malaysia, 11800
Pulau Pinang, Malaysia
3Mechanical Engineering,
The University of Auckland, Auckland, New Zealand
Diserahkan: 20
April 2015/Diterima: 18
November 2015
ABSTRACT
Distribution of gold nanoparticles
(AuNPs) on a substrate becomes crucial in nanotechnology applications.
This work describes a route to fabricate AuNPs directly on silicon
substrates by using an aluminum template in hydrothermal reaction
at 80°C for 1 h. The effect of aluminum nitrate (Al(NO3)3)
concentration in the hydrothermal bath was investigated. The properties
of AuNPs were studied using field-emission scanning electron microscope
(FESEM),
x-ray diffractometer (XRD) and semiconductor characterization
system (SCS). Two distinct sizes of AuNPs were
observed by FESEM. XRD analysis proved the formation
of AuNPs directly on the substrate. AuNPs were embedded between
polymethylsilsesquioxane (PMSSQ) in order to investigate their
effect on memory properties. The sample grown in 0.1 M Al(NO3)3
exhibited the largest hysteresis window (2.6
V) and the lowest Vth (2.2 V) to turn ‘ON’
the memory device. This indicated that good distribution of FCC structure
AuNPs with 80±4 nm and 42±7 nm of large and small particles produced
better charge storage capability. Charge transport mechanisms of
AuNPs embedded in PMSSQ
were explained in details whereby electrons from Si
are transported across the barrier by thermionic effects via field-assisted
lowering at the Si-PMSSQ interface with the combination
of the Schottky and Poole Frenkel emission effect in Region 1. Trapped
charge limited current (TCLC) and space charge limited current
(SCLC)
transport mechanism occurred in Region 2 and Region 3.
Keywords: Gold nanoparticles;
hydrothermal; memory devices; template
ABSTRAK
Taburan nanopartikel emas (AuNPs)
pada substrat adalah penting dalam aplikasi nanoteknologi. Kajian
ini menerangkan cara untuk menghasilkan AuNPs secara langsung di
atas substrat silikon dengan menggunakan templat aluminium dalam
tindak balas hidroterma pada suhu 80°C selama 1 jam. Kesan kepekatan
aluminium nitrat (Al(NO3)3) dalam rendaman hidroterma dikaji. Sifat
AuNPs telah dikaji menggunakan pancaran medan mikroskop elektron
imbasan (FESEM), pembelauan sinar-x (XRD) dan sistem pencirian semikonduktor
(SCS). Dua saiz berbeza AuNPs diperhatikan menggunakan FESEM. Analisis
XRD membuktikan pembentukan AuNPs secara langsung ke atas substrat.
AuNPs tertanam antara polimetilsilseskuioksana (PMSSQ) untuk mengkaji
kesannya ke atas sifat ingatan. Sampel yang dihasilkan di dalam
0.1 M Al(NO3)3 menghasilkan tetingkap histeresis terbesar (2.6 V)
dan Vth (2.2 V) terendah untuk menghidupkan peranti ingatan. Ini
menunjukkan pengagihan yang baik oleh struktur FCC AuNPs dengan
80±4 nm dan 42±7 nm partikel besar dan kecil menghasilkan
keupayaan penyimpanan cas yang lebih baik. Mekanisme pengangkutan
cas di dalam AuNPs tertanam dalam PMSSQ telah dijelaskan secara
terperinci manakala elektron daripada Si diangkut merentasi halangan
oleh kesan termionik melalui perendahan medan-berbantu pada antara
muka Si-PMSSQ dengan gabungan kesan pancaran Schottky dan Poole
Frenkel dalam Rantau 1. Mekanisme pengangkutan perangkap arus cas
terhad (TCLC) dan ruang arus cas terhad (SCLC) berlaku di Rantau
2 dan 3.
Kata
kunci: Hidroterma; nanopartikel emas; peranti ingatan; templat
RUJUKAN
Ahmad, Z., Ooi,
P.C., Aw, K.C. & Sayyad, M.H. 2011. Electrical characteristics
of poly(Methylsilsesquioxane) thin films for non-volatile memory.
Solid State Communications 151(4): 297-300.
Cao, L., Zhu, T.
& Liu, Z. 2006. Formation mechanism of nonspherical gold nanoparticles
during seeding growth: Roles of anion adsorption and reduction rate.
Journal of Colloid and Interface Science 293(1): 69-76.
Daniel, M.C. &
Astruc, D. 2004. Gold nanoparticles: Assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology,
catalysis, and nanotechnology. Chemical Reviews 104(1): 293-346.
Das, A., Das, S.
& Raychaudhuri, A.K. 2008. Growth of two-dimensional arrays
of uncapped gold nanoparticles on silicon substrates. Bulletin
of Materials Science 31(3): 277-282.
Goh, L., Razak,
K., Ridhuan, N., Cheong, K., Ooi, P. & Aw, K. 2012. Direct formation
of gold nanoparticles on substrates using a novel zno sacrificial
templated-growth hydrothermal approach and their properties in organic
memory device. Nanoscale Research Letters 7(1): 563.
Gowd, E.B., Nandan,
B., Bigall, N.C., Eychmüller, A., Formanek, P. & Stamm, M. 2010.
Hexagonally ordered arrays of metallic nanodots from thin films
of functional block copolymers. Polymer 51(12): 2661-2667.
Granmayeh Rad,
A., Abbasi, H. & Afzali, M.H. 2011. Gold nanoparticles: Synthesising,
characterizing and reviewing novel application in recent years.
Physics Procedia 22: 203-208.
Gupta, B., Melvin,
A. & Prakash, R. 2014. Synthesis of polyanthranilic acid-au
nanocomposites by emulsion polymerization: Development of dopamine
sensor. Bulletin of Materials Science 37(6): 1389-1395.
Haensch, C., Hoeppener,
S. & Schubert, U.S. 2010. Chemical modification of self-assembled
silane based monolayers by surface reactions. Chemical Society
Reviews 39(6): 2323- 2334.
Kim, T.W., Yang,
Y., Li, F. & Kwan, W.L. 2012. Electrical memory devices based
on inorganic/organic nanocomposites. NPG Asia Materials 4:
e18.
Lai, Y.C., Wang,
D.Y., Huang, I.S., Chen, Y.T., Hsu, Y.H., Lin, T.Y., Meng, H.F.,
Chang, T.C., Yang, Y.J., Chen, C.C., Hsu, F.C. & Chen, Y.F.
2013. Low operation voltage macromolecular composite memory assisted
by graphene nanoflakes. Journal of Materials Chemistry C 1(3):
552-559.
Lee, J.S. 2010.
Recent progress in gold nanoparticle-based non-volatile memory devices.
Gold Bulletin 43(3): 189-199.
Liu, C.H. &
Yu, X. 2011. Silver nanowire-based transparent, flexible, and conductive
thin film. Nanoscale Res. Lett. 6(1): 75.
Mantri, K., Selvakannan,
P., Tardio, J. & Bhargava, S.K. 2013. Synthesis of very high
surface area au-sba-15 materials by confinement of gold nanoparticles
formation within silica pore walls. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 429: 149-158.
Mark, P.R. 2013.
Forces and interactions between nanoparticles for controlled structures.
PhD Thesis. Rutgers University- Graduate School-New Brunswick (Unpublished).
Masala, O. &
Seshadri, R. 2004. Synthesis routes for large volumes of nanoparticles.
Annu. Rev. Mater. Res. 34: 41-81.
Ng, S.A., Razak,
K.A., Goh, L.P., Cheong, K.Y., Ooi, P.C. & Aw, K.C. 2014. Direct
formation of aunps thin film using thermal evaporated zinc as sacrificial
template in hydrothermal method. Journal of Materials Science:
Materials in Electronics 25(5): 2227-2236.
Park, B., Im, K.J.,
Cho, K. & Kim, S. 2008. Electrical characteristics of gold nanoparticle-embedded
mis capacitors with parylene gate dielectric. Organic Electronics
9(5): 878-882.
Paul, S., Pearson,
C., Molloy, A., Cousins, M., Green, M., Kolliopoulou, S., Dimitrakis,
P., Normand, P., Tsoukalas, D. & Petty, M. 2003. Langmuir-Blodgett
film deposition of metallic nanoparticles and their application
to electronic memory structures. Nano Letters 3: 533-536.
Philip, D. 2008.
Synthesis and spectroscopic characterization of gold nanoparticles.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
71(1): 80-85.
Raznjevic,
K. 1976. Handbook of Thermodynamic Tables and Charts. Philadelphia:
Hemisphere Publishing Corporation.
Sethuraman, K., Ochiai, S., Kojima, K. & Mizutani, T. 2008.
Performance of poly(3-hexylthiophene) organic field-effect transistors
on cross-linked poly(4-vinyl phenol) dielectric layer and solvent
effects. Applied Physics Letters 92(18): 183302.
Sun, X., Fu, Z.
& Wu, Z. 2002. Fractal processing of afm images of rough zno
films. Materials Characterization 48(2-3): 169-175.
Taleghani, M. &
Riahi-Noori, N. 2013. Synthesis of alumina nano powder by a gel
combustion method. Journal of Ceramic Processing Research 14(1):
17-21.
Thanh, N.T. &
Green, L.A. 2010. Functionalisation of nanoparticles for biomedical
applications. Nano Today 5(3): 213-230.
Ward, C.J., Tronndorf,
R., Eustes, A.S., Auad, M.L. & Davis, E.W. 2014. Seed-mediated
growth of gold nanorods: limits of length to diameter ratio control.
Journal of Nanomaterials 2014: Article ID 765618.
*Pengarang untuk surat menyurat; email:
khairunisak@usm.my
|