Sains Malaysiana 45(8)(2016): 1183–1190
Phytotoxicity
Assessment of nano-ZnO on Groundnut (Arachis hypogaea) Seed Germination
in MS Medium
(Penilaian
Kefitotoksikan nano-ZnO ke atas Percambahan Biji Benih Kacang Tanah
(Arachis hypogaea) dalam Medium MS)
EHSAN BORZOUYAN DASTJERDI*, ISMAIL
BIN SAHID & KHAIRIAH BINTI JUSOH
School of Environmental and Natural
Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 20 April 2015/Diterima: 26
Januari 2016
ABSTRACT
Due to the increasing production and use of nanoparticles in
various sectors such as electronic industries and healthcare, concerns about
the unknown effects caused by the presence of these materials in the natural
environment and agricultural systems were on the rise. Because of the growing
trend of ZnO nanoparticles (nZnO) which is one of the most widely used
nanoparticles being released into the environment, it has attracted the
attention for more studies to be done on the effects of this nanoparticle on
organisms. This study was carried out to investigate the phytotoxicity effect
of nZnO on groundnut seedlings in Murashige and Skoog (MS)
medium. The experimental treatments of this study include eight concentrations
of nZnO (10, 30, 50, 100, 200, 400, 1000 & 2000 mg.L-1)
added to MS medium and MS medium without nanoparticles
have been used as control treatment. For the first 6 days after sowing,
germination percent and germination rate index were calculated by counting the
germinated seeds every day. Groundnut seedlings were incubated for 3 weeks in
optimum condition and after that, seedling characteristics such as length, wet
and dry weight of radicle and plumule were measured. The water content of
radicle and plumule were also calculated. The results of this study showed that
radicle and plumule length of groundnut seedlings were affected by nZnO
exposure, in a way that length of radicles in 50 mg.L-1 nZnO
and higher concentrations was significantly lower than that of control
treatment and the shortest plumule length was observed in 2000 mg.L-1 nZnO
concentration treatment. Both the radicle and plumule wet weight were also
decreased as the nanoparticle concentration was increased. However, despite the
decreasing in radicle and plumule dry weight with increasing in nZnO
concentration, this increase was not significant. However radicle dry weight in
10 mg.L-1 nZnO was significantly higher
than nZnO treatments with 200 mg.L-1 concentration
and higher concentrations. Moreover, observations of this study did not show
any significant difference between the water content of nZnO concentration
treatments and control treatment.
Keywords: Nanoparticle exposure; plumule length;
radicle length
ABSTRAK
Peningkatan dalam pengeluaran dan penggunaan zarah nano pada pelbagai
sektor seperti industri elektronik dan penjagaan kesihatan telah
menyebabkan kebimbangan mengenai kesan yang tidak diketahui oleh
kehadiran bahan dalam alam semula jadi dan sistem pertanian semakin
meningkat. Peningkatan trend zarah nano ZnO (nZnO) yang paling kerap
digunakan telah dibebaskan ke dalam persekitaran dan menarik perhatian
supaya lebih banyak kajian dijalankan tentang kesan nanopartikel
ini ke atas organisma. Kajian ini telah dijalankan untuk mengkaji
kesan kefitotoksikan nZnO pada benih kacang tanah dalam medium Murashige dan Skoog (MS). Rawatan percubaan kajian
ini menggunakan lapan kepekatan nZnO (10, 30, 50, 100, 200, 400,
1000 & 2000 mg.L-1) yang ditambah ke medium MS dan
medium MS tanpa nanopartikel sebagai kawalan. Sepanjang 6 hari
pertama selepas semaian, peratus percambahan dan indeks kadar percambahan
menghitung dengan mengira percambahan biji benih setiap hari. Benih
kacang tanah dieram selama 3 minggu dalam keadaan optimum dan selepas
itu ciri-ciri anak benih seperti panjang, berat basah dan kering
radikel dan plumul telah diukur. Kandungan air radikel dan plumul
juga akan dikira. Keputusan kajian ini menunjukkan panjang radikel
dan plumul anak benih kacang tanah dipengaruhi oleh pendedahan nZnO
dengan panjang radikel 50 mg.L-1
nZnO dan kepekatan yang lebih tinggi adalah jauh lebih
rendah berbanding rawatan kawalan dan kepanjangan plumul yang paling
pendek diperhatikan pada 2000 mg.L-1
nZnO rawatan kepekatan. Selain itu, berat basah radikel
dan plumul juga menurun kerana kepekatan nanopartikel ditingkatkan.
Namun begitu, walaupun penurunan berat kering radikel dan plumul
dilihat dengan peningkatan pada kepekatan nZnO, peningkatan ini
tidak bererti. Oleh itu, berat radikel kering dalam 10 mg.L-1
nZnO adalah jauh lebih tinggi daripada rawatan nZnO
dengan kepekatan 200 mg.L-1
dan lebih. Selain itu, pemerhatian daripada kajian
ini tidak menunjukkan sebarang perbezaan yang ketara antara kandungan
air rawatan kepekatan nZnO dan kawalan rawatan.
Kata kunci: Panjang plumul; panjang radikel; pendedahan
nanopartikel
RUJUKAN
Biener, J., Farfan-Arribas, E., Biener, M.,
Friend, C.M. & Madix, R.J. 2005. Synthesis of TiO2 nanoparticles
on the Au (111) surface. Journal of Chemical Physics 123(9): 094705.
Boonyanitipong, P., Kositsup, B., Kumar, P.,
Baruah, S. & Dutta, J. 2011. Toxicity of Zno and TiO2 nanoparticles on germinating rice seed. International Journal of Bioscience,
Biochemistry and Bioinformatics 1: 282-285.
Deb, N. 2012. Plant Nutrient Coated
Nanoparticles and Methods for Their Preparation and Use. Google Patents.
Dhoke, S.K., Mahajan, P., Kamble, R. &
Khanna, A. 2013. Effect of nanoparticles suspension on the growth of mung (Vigna
radiata) seedlings by foliar spray method. Nanotechnology Development 3(1):
e1.
Feizi, H., Moghaddam, P.R., Shahtahmassebi, N.
& Fotovat, A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2)
on wheat seed germination and seedling growth. Biological Trace Element
Research 146(1): 101-106.
Gardea-Torresdey, J.L., Rico, C.M. & White,
J.C. 2014. Trophic transfer, transformation, and impact of engineered
nanomaterials in terrestrial environments. Environmental Science &
Technology 48(5): 2526-2540.
Jha, Z., Behar, N., Sharma, S.N., Chandel, G.,
Sharma, D. & Pandey, M. 2011. Nanotechnology: Prospects of agricultural
advancement. Nano Vision 1(2): 88-100.
Karaguzel, O., Cakmakci, S., Ortacesme, V. &
Aydinoglu, B. 2004. Influence of seed coat treatments on germination and early
seedling growth of Lupinus varius L. Pakistan Journal of Botany 36(1):
65-74.
Khodakovskaya, M., Dervishi, E., Mahmood, M.,
Xu, Y., Li, Z., Watanabe, F. & Biris, A.S. 2009. Carbon nanotubes are able
to penetrate plant seed coat and dramatically affect seed germination and plant
growth. ACS Nano 3(10): 3221-3227.
Klaine, S.J., Alvarez, P.J., Batley, G.E.,
Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., Mclaughlin, M.J. &
Lead, J.R. 2008. Nanomaterials in the environment: Behavior, fate,
bioavailability, and effects. Environmental Toxicology and Chemistry 27(9):
1825-1851.
Lee, C.W., Mahendra, S., Zodrow, K., Li, D.,
Tsai, Y.C., Braam, J. & Alvarez, P.J. 2010. Developmental phytotoxicity of
metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology
and Chemistry 29(3): 669-675.
López-Moreno, M.L., de La Rosa, G., Hernández-Viezcas,
J.Á., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R.
& Gardea-Torresdey, J.L. 2010. Evidence of the differential
biotransformation and genotoxicity of Zno and Ceo2 nanoparticles
on soybean (Glycine max) plants. Environmental Science
& Technology 44(19): 7315-7320.
Ma, H., Williams, P.L. & Diamond, S.A. 2013.
Ecotoxicity of manufactured Zno nanoparticles-a review. Environmental Pollution
172: 76-85.
Ma, X., Geiser-Lee, J., Deng, Y. & Kolmakov,
A. 2010. Interactions between engineered nanoparticles (Enps) and plants:
phytotoxicity, uptake and accumulation. Science of the Total Environment 408(16):
3053-3061.
Milani, N. 2012. Zinc Oxide Nanoparticles in the
Soil Environment: Dissolution, Speciation, Retention and Bioavailability.
PhD Dissertation. The University of Adelaide.
Mousavi, S.R. & Rezaei, M. 2011.
Nanotechnology in agriculture and food production. J. Appl. Environ. Biol.
Sci. 1(10): 414-419.
Murashige, T. & Skoog, F. 1962. A revised
medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia
Plantarum 15(3): 473-497.
Nair, R., Varghese, S.H., Nair, B.G., Maekawa,
T., Yoshida, Y. & Kumar, D.S. 2010. Nanoparticulate material delivery to
plants. Plant Science 179(3): 154-163.
Prasad, T., Sudhakar, P., Sreenivasulu, Y.,
Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T., Sajanlal, P. &
Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination,
growth and yield of peanut. Journal of Plant Nutrition 35(6): 905-927.
Sharma, K.K. & Bhatnagar-Mathur, P. 2006.
Peanut (Arachis hypogaea L.). In Agrobacterium Protocols, edited
by Wang, K. New Jersey: Humana Press Inc. pp. 347-358.
Soleimanpour, M.R.,
Hosseini, S.J.F., Mirdamadi, S.M. & Sarafrazi, A. 2011. Challenges in
commercialization of nanotechnology in agriculture sector of Iran. Annals of
Biological Research 2(4): 68-75.
Song, U., Jun, H.,
Waldman, B., Roh, J., Kim, Y., Yi, J. & Lee, E.J. 2013. Functional analyses
of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on
tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental
Safety 93: 60-67.
Zheng, L., Hong, F., Lu, S. & Liu, C. 2005. Effect of Nano-TiO2 on
strength of naturally aged seeds and growth of spinach. Biological Trace
Element Research 104(1): 83-91.
*Pengarang untuk surat-menyurat; email: eborzuyan@yahoo.com
|