Sains Malaysiana 45(4)(2016): 601–608

Treatment of Wastewater Originating from Aquaculture and Biomass Production in Laboratory Algae Bioreactor using Different Carbon Sources

(Rawatan Air Sisa daripada Pengeluaran Akuakultur dan Biojisim di Makmal Alga Bioreaktor Menggunakan Punca Karbon yang Berbeza)

 

KATYA N. VELICHKOVA1*, IVAYLO N. SIRAKOV1, GEORGI G. BEEV2, STEFAN A. DENEV2 & DIMITAR H. PAVLOV3

 

1Department of Biology and Aquaculture, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

 

2Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria

 

3Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora

Bulgaria

 

Diserahkan: 31 Mei 2015/Diterima: 6 Oktober 2015

 

ABSTRACT

The aim of present study was to explore the effect of different carbon sources on biomass accumulation in microalgae Nannochloropsis oculata and Tetraselmis chuii and their ability to remove N and P compounds during their cultivation in aquaculture wastewater. Microalgae cultivation was performed in laboratory bioreactor consisted from 500 mL Erlenmeyer flasks, containing 250 mL wastewater from semi closed recirculation aquaculture system. The cultures were maintained at room temperature (25-27ºC) on a fluorescent light with a light: dark photoperiod of 15 h: 9 h. The microalgae species were cultivated in wastewater with different carbon sources: glucose, lactose and saccharose. The growth of strains was checked for 96 h period. In the present study, N. oculata and T. chuii showed better growth in wastewater from aquaculture with saccharose carbon source during the experiment. The most effective reduce of nitrate and total nitrogen was proved in N. oculata cultivated in wastewater with glucose as carbon source. T. chuii cultivated in wastewater containing glucose showed 8.27% better cleaning effect in ammonium compared with N. oculata. T. chuii grew in wastewater with glucose as carbon source showed 19.5% better removal effect in phosphate compared with N. oculata strain.

 

Keywords: Biomass; Nannochloropsis oculata; Tetraselmis chuii; wastewater

 

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk mengkaji kesan punca karbon yang berbeza terhadap pengumpulan biojisim pada mikroalga Nannochloropsis oculata dan Tetraselmis chuii serta keupayaan mereka untuk mengeluarkan sebatian N dan P semasa penanaman di dalam akuakultur air sisa. Penanaman mikroalga dijalankan dalam bioreaktor makmal yang terdiri daripada 500 termos mL Erlenmeyer, yang mengandungi 250 mL air sisa daripada sistem edaran semula akuakultur separuh tertutup. Kultur dikekalkan pada suhu bilik (25-27ºC dengan cahaya lampu neon: fotokala gelap 15 h: 9 h. Spesies mikroalga telah ditanam dalam air sisa dengan punca karbon berbeza: glukosa, laktosa dan sakarosa. Pertumbuhan strain telah dipantau untuk tempoh 96 jam. Dalam kajian ini N. oculata dan T. chuii menunjukkan pertumbuhan yang lebih baik dalam air sisa oleh akuakultur, dengan punca karbon sakarosa semasa eksperimen. Paling berkesan mengurangkan nitrat dan jumlah nitrogen telah dibuktikan dalam N. oculata yang ditanam di dalam air sisa dengan glukosa sebagai punca karbon. T. chuii yang ditanam dalam air sisa mengandungi glukosa menunjukkan kesan pembersihan 8.27% lebih baik dalam ammonium berbanding dengan N. oculata. T. chuii yang membesar dalam air sisa dengan menggunakan glukosa sebagai punca karbon menunjukkan kesan penyingkiran 19.5% lebih baik dalam fosfat berbanding dengan strain N. oculata.

 

Kata kunci: Air sisa; biojisim; Nannochloropsis oculata; Tetraselmis chuii

RUJUKAN

Admiraal, W., Riaux-Gobin, C. & Laane, R.W.M. 1987. Interactions of ammonium, nitrate, and D- and L- amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40: 267-273.

Bashan, L.E., Hernandez, J.P., Morey, T. & Bashan, Y. 2004. Microalgae growth-promoting bacteria as ‘helpers’ for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38: 466-474.

Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K. & Bustillos, J.J. 2002. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. When co-immobilized in alginate beads with the microalgae-growth promoting bacterium Azospirillum brasilense. Can. J. Microbiol. 48: 514-521.

Bastos, R.G., Paiva, P.R., Rigo, M., Veiga, G. & Queiroz, M.I. 2011. Growth of Aphanothece microscopica Nägeli on exogenous sugars. Biosci. J., Uberlândia. 27: 156-161.

Blasco, D. & Conway, H.L. 1982. Effect of ammonium on the regulation of nitrate assimilation in natural phytoplankton populations. J. Exp. Mar. Biol. Ecol. 61: 157- 158.

Becker, E.W. 1994. Culture Media. In Microalgae: Biotechnology and Microbiology. Cambridge: Cambridge University Press. pp. 9-41.

Cerón, G.M., Camacho, F.G., Mirón, S., Sevilla, M.F., Chisti, Y. & Grima, E.M. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694.

Chandra, R., Rohit, M., Swamy, Y. & Venkata, M. 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresource Technology 165: 279-287.

Cid, A., Abalde, J. & Concepción, H. 1992. High yield mixotrophic cultures of the marine microalga Tetraselmis suecica Butcher. J. Appl. Phycol. 4: 31-37.

Cresswell, R.C. & Syrett, P.J. 1979. Ammonium inhibition of nitrate uptake by the diatom. Phaeodactylum tricornutum. Plant Sci. Lett. 14: 321-325.

Flynn, K.J. 1999. Nitrate transport and ammonium-nitrate interactions at high nitrate concentrations and low temperature. Mar. Ecol. Prog. Ser. 187: 283-287.

Flynn, K.J., Fasham, M.J.R. & Hipkin, C.R. 1997. Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Phil. Trans. R. Soc. Lond. 352: 1625-1645.

Goldman, J.C., Azov, Y., Riley, C.B. & Dennett, M.R. 1982. The еffect of pH in intensive microalgal cultures. I. Biomass regulation. Journal of Experimental Marine Biology and Ecology 57: 1-13.

Gonzalez, C., Marciniak, J., Villaverde, S., Garcia-Encina, P.A. & Munoz, R. 2008. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Appl. Microbiol. Biot. 80: 891-898.

Harun, R., Singh, M., Forde, G.M. & Danquah, M.K. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev. 14: 1037-1047.

Herrera, J., Paneque, A., Maldonado, J.M., Barea, J.L. & Losada, M. 1972. Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardi. Biochem. Biophys. Res. Commun. 48: 996-1003.

Hii, Y.S., Soo, C.L., Chuah, T.S., Mohd-Azmi, A. & Abol- Munafi, A.B. 2011. Interactive effect of ammonia and nitrate on the nitrogen uptake by Nannochloropsis sp. Journal of Sustainability Science and Management 6: 60-68.

Hodaifa, G., Martinez, M. & Sanchez, S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technol. 99: 1111- 1117.

Kargupta, W., Ganesh, A. & Mukherji, S. 2015. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor. Bioresour Technol. 180: 370-375.

Kim, M.K., Park, J.W., Park, C.S., Kim, S.J., Jeune, K.H., Chang, M.U. & Acreman, J. 2007. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresource Technol. 98: 2220-2228.

Lebeau, T. & Robert, J.M. 2006. Biotechnology of immobilized micro algae: A culture technique for the future? In Algal Cultures, Analogues of Blooms and Applications, edited by Rao, S. New Hampshire: Science Publishers. pp. 801-837.

Lee, K. & Lee, C. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol. 12: 979-985.

Li, X., Hu, H., Gan, K. & Sun, Y. 2010a. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus spp. Bioresource Technol. 101: 5494-5500.

Li, X., Hu, H.Y., Gan, K. & Yang, J. 2010b. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol. Eng. 36: 379-381.

Losada, M., Paneque, A., Aparicio, P.J., Vega, J.M., Cgrdenas, J. & Herrera, J. 1970. Inactivation and repression by ammonium of the nitrate reducing system in Chlorella. Biochem. Biophys. Res. Commun. 38: 1009-1015.

Lowrey, J.B. 2011. Seawater/wastewater production of microalgae-based biofuels in closed loop tubular photobioreactors, 127 (MSc in Agriculture, Agricultural Engineering Technology, The Faculty of California Polytechnic State University, San Luis Obispo, USA (Unpublished).

Maguer, J.F., Helguen, S., Madec, C., Labry, C. & Corre, P.L. 2007. Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dynophyceae): Effect of n-limited growth rate on nitrate and ammonium interactions. J. Phycol. 43: 295-303.

Martinez, M.E., Sanchez, S., Jimenez, J.M., El Yousfi, F. & Munoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technol. 73: 263-272.

Michels, M., Vaskoska, M., Vermu, M. & Wijffels, R. 2014. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Water research 65: 290-296.

Munoz, R. & Guieysse, B. 2006. Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Research 40: 2799-2815.

Paasche, E. & Kristiansen, S. 1982. Nitrogen nutrition of the phytoplankton in the Oslofjord. Estuar. Coast. Shelf. Sci. 14: 237-249.

Parker, R.A. 1993. Dynamic models for ammonium inhibition of nitrate uptake by phytoplankton. Ecol. Modell. 66: 113-120.

Perez-Garcia, O., Froylan, M.E., Escalante, L.E. & Bashan, Y. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45: 11-36.

Pulz, O. & Gross, W. 2004. Valuable products from biotechnology microalgae. Appl. Microbiol. Biotechnol. 65: 635-648.

Pulz, O. 2001. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57: 287-293.

Ruiz-Marin, A., Leopoldo, G., Espinosa, M. & Stephenson, T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technol. 101: 58-64.

Sousa, L., Hora, D., Sales, E. & Perelo, L. 2014. Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source. Braz. Arch. Boil. Technol. 57: 171-177.

Syrett, P.J. & Morris, I. 1963. The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim. Biophys. Acta. 67: 566-575.

Usharani, K. & Lakshmanaperumalsamy, P. 2010. Bio-treatment of phosphate from synthetic wastewater using Pseudomonas sp. YLW-7. Journal of Applied Sciences and Environmental Management 14: 75-80.

Voltolina, D., Gomez-Villa, H. & Correa, G. 2005. Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technol. 96: 359-362.

 

 

*Pengarang untuk surat-menyurat; email: genova@abv.bg

 

sebelumnya