Sains Malaysiana 45(11)(2016): 1747–1754
A Sixth-Order RKFD Method with Four-Stage for Directly Solving Special Fourth-Order
ODEs
(Kaedah
RKFD Peringkat Keenam dengan Tahap
Empat untuk
Menyelesaikan Secara Terus PPB Khas Peringkat Keempat)
FUDZIAH ISMAIL1,2*, KASIM HUSSAIN3
& NORAZAK SENU1,2
1Department of Mathematics,
Faculty of Science, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul
Ehsan, Malaysia
2Institute for Mathematical
Research, Universiti Putra Malaysia,
43400 Serdang, Selangor
Darul Ehsan, Malaysia
3Department of Mathematics,
College of Science, Al-Mustansiriyah
University, Baghdad
Iraq
Diserahkan: 28 Oktober 2015/Diterima: 23 Mac 2016
ABSTRACT
In this article, the general
form of Runge-Kutta method for directly
solving a special fourth- order ordinary differential equations
denoted as RKFD
method is given. The order conditions up to order
seven are derived, based on the order conditions,
we construct a new explicit four-stage sixth-order RKFD method denoted as RKFD6
method. Zero-stability of the method is proven. Comparisons are
made using the existing Runge–Kutta
methods after the problems are reduced to a system of first order
ordinary differential equations. Numerical results are presented
to illustrate the efficiency and competency of the new method.
Keywords: Ordinary differential
equations; special fourth order; RKFD
method; Runge-Kutta method
ABSTRAK
Dalam kertas ini,
bentuk umum kaedah
Runge-Kutta untuk
menyelesaikan secara terus persamaan pembezaan biasa khas peringkat keempat yang ditandakan sebagai kaedah RKFD diberikan. Syarat tertib
hingga ke
peringkat ketujuh diterbitkan, berasaskan syarat ini, kami bina kaedah baharu
RKFD
tahap empat
peringkat keenam yang ditandakan sebagai RKFD6.
Kestabilan
sifar kaedah
ini dibuktikan. Perbandingan dijalankan menggunakan kaedah Runge-Kutta sedia ada setelah
masalah tersebut
diturunkan kepada sistem persamaan pembezaan peringkat pertama. Keputusan berangka dipersembahkan
untuk menunjukkan
kecekapan dan kompetensi
kaedah yang baharu
tersebut.
Kata kunci: Kaedah
RKFD; kaedah Runge-Kutta; peringkat keempat khas; persamaan
pembezaan biasa
RUJUKAN
Awoyemi, D.O.
& Idowu, O.M. 2005. A class of hybrid collecations methods for
third-order ordinary differential equations. International
Journal of Computer Mathematics 82(10): 1287-1293.
Butcher, J.C. 2008. Numerical
Methods for Ordinary Differential Equations. New York:
John Wiley & Sons.
Butcher, J.C. 1964. On Runge-Kutta processes of high order. Journal of
the Australian Mathematical Society 4(2): 179- 194.
Dahlquist, G. 1978. On accuracy
and unconditional stability of linear multistep methods for second
order differential equations. BIT Numerical Mathematics
18(2): 133-136.
Dormand, J.R.
1996. Numerical Methods for Differential Equations, A Computational Approach. Florida: CRC Press.
Dormand, J.R.,
El-Mikkawy, M.E.A. & Prince, P.J.
1987. Families of Runge-Kutta-Nyström formulae.
IMA Journal of Numerical Analysis 7(2): 235-250.
Hairer, E.,
Nørsett, S.P. & Wanner,
G. 2010. Solving Ordinary Differential Equations I: Nonstiff
Problems. Berlin: Springer- Verlag.
Henrici, P. 1962. Discrete
Variable Methods in Ordinary Differential Equations.
New York: John Wiley & Sons.
Hussain, K., Ismail, F. & Senu, N.
2015. Runge-Kutta type methods for directly solving special fourth-order ordinary differential
equations. Mathematical Problems in Engineering 2015:
Article ID. 893763.
Jator, S.N. 2011. Solving second order initial value problems by a hybrid
multistep method without predictors. Applied Mathematics and
Computation 217(8): 4036-4046.
Kayode, S.J. 2008. An order six zero-stable method for
direct solution of fourth-order ordinary differential equations.
American Journal of Applied Sciences 5(11): 1461-1466.
Lambert, J.D. 1991.
Numerical Methods for Ordinary Differential Systems, The
Initial Value Problem. England: John Wiley & Sons.
Majid,
Z.A. & Suleiman, M. 2006. Direct integration method implicit variable
steps method for solving higher order systems of ordinary differential
equations directly. Sains
Malaysiana 35(2): 63-68.
Olabode, B.T. 2009. A six-step scheme for the solution of fourth-order ordinary differential
equations. The Pacific Journal of Science and Technology
10(1): 143-148.
Onumanyi,
P., Sirisena, U.W. & Jator, S.N.
1999. Continuous finite difference approximations for solving differential
equations. International Journal of Computer Mathematics
72(1): 15-27.
Waeleh,
N., Majid, Z.A. & Ismail, F. 2011. A new algorithm
for solving higher order IVPs of ODEs. Applied Mathematical
Science 5(56): 2795-2805.
*Pengarang untuk surat-menyurat; email: fudziah_i@yahoo.com.my