Sains Malaysiana 45(11)(2016): 1679–1687
Effect of Cement Additive and Curing Period
on Some Engineering Properties of Treated Peat Soil
(Kesan Aditif Simen dan Tempoh Perawatan
terhadap Beberapa Sifat Kejuruteraan Tanah Gambut Terawat)
Z.A. RAHMAN*,
N.
SULAIMAN,
S.A.
RAHIM,
W.M.R.
IDRIS
& T. LIHAN
Pusat
Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
20 September 2013/Diterima: 28 Mac 2016
ABSTRACT
Peat soil is characterized
by its high content of decomposed organic matter. Majority of
areas occupied by peatland have been developed for agriculture
sectors such as pineapple cultivation and oil palm. Due to its
geotechnical drawback characteristics such as highly compressibility
and low shear strength, peat soil is classified as problematic
soils and unstable for engineering structures. Lack of suitable
and expensive price of lands, peatland will be an alternative
option for future development. Prior to construction works, stabilization
of peat soil should be carried out to enhance its engineering
characteristics. This paper presents the effect of cement and
curing period on engineering properties of the cement-treated
peat soil. Some engineering variables were examined including
the compaction behaviour, permeability and unconfined compressive
strength (UCS).
The Atterberg limit test was also performed to examine the influence
of cement addition on peat soil. The cement-treated peat soils
were prepared by adding varying amount of ordinary Portland cement
(OPC)
ranging between 0% and 40% of dry weight of peat soil. In order
to examine the effect of curing, the treated samples were dried
at room temperature for three and seven days while for UCS tests samples were extended to 28
days prior to testings. The results showed that the liquid limit
of treated soil decreased with the increase of cement content.
Maximum dry density (MDD)
increased while optimum moisture content (OMC)
dropped with the increase in cement content. Permeability of treated
soil decreased from 6.2×10-4 to 2.4×10-4 ms-1 as
cement content increase from 0% to 40%. In contrast, the UCS tests
indicated an increase in uncompressive strength with the increase
in cement contents and curing period. The liquid limit and permeability
were also altered as curing periods were extended from three to
seven days. This study concluded that geotechnical properties
of peat soil can be stabilized using ordinary cement and by modification
of the curing periods.
Keywords: Curing; peat soil;
Portland cement; treated soil; unconfined compressive strength
ABSTRAK
Tanah
gambut dicirikan oleh kandungan reputan organiknya yang tinggi. Kebanyakan kawasan tanah gambut telah dibangunkan untuk sektor pertanian
seperti penanaman nenas dan kelapa sawit. Akibat
daripada kelemahan sifat geotekniknya seperti kebolehmampatan
yang tinggi dan kekuatan ricih yang rendah, tanah gambut dikelaskan
sebagai tanah bermasalah dan tidak stabil untuk struktur kejuruteraan.
Kekurangan tanah yang sesuai dan harga yang
mahal menyebabkan tanah gambut merupakan pilihan alternatif bagi
pembangunan pada masa hadapan. Sebelum kerja pembinaan dijalankan, penstabilan tanah gambut perlu
dilakukan untuk meningkatkan ciri geoteknikal. Kertas
ini membincangkan peranan simen dan tempoh perawatan ke atas sifat
kejuruteraan tanah gambut terawat. Beberapa
parameter kejuruteraan diuji terdiri daripada lakuan pemadatan,
ketelapan dan kekuatan mampatan tidak terkurung (UCS). Ujian had Atterberg juga dijalankan bagi melihat
pengaruh simen terhadap tanah gambut. Tanah gambut terawat simen
telah disediakan dengan menambahkan simen Portland biasa (OPC)
pada jumlah yang berbeza antara 0% dan 40% terhadap berat kering
tanah gambut. Untuk menguji kesan perawatan, sampel terawat dikeringkan pada suhu
bilik selama tiga dan tujuh hari manakala bagi UCS dilanjutkan
kepada 28 hari sebelum pengujian. Hasil kajian menunjukkan
bahawa had cecair tanah yang terawat menurun dengan peningkatan
kandungan simen. Ketumpatan kering maksimum (MDD) meningkat manakala kandungan
lembapan optimum (OMC) menurun dengan peningkatan
dalam kandungan simen. Kebolehtelapan tanah yang terawat
menurun daripada 6.2 × 10-4 kepada 2.4 × 10-4 ms-1 dengan
kandungan simen meningkat daripada 0% hingga 40%. Sebaliknya,
ujian UCS menunjukkan peningkatan dalam kekuatan dengan peningkatan
kandungan simen dan tempoh perawatan. Had
cecair dan ketelapan juga berubah dengan peningkatan tempoh perawatan.
Kajian ini menyimpulkan bahawa sifat geoteknikal tanah gambut distabilkan
dengan penggunaan simen biasa dan pengubahsuaian tempoh perawatan.
Kata kunci: Kekuatan mampatan tidak terkurung; simen Portland; tanah
gambut; tanah terawat
RUJUKAN
Abu
Bakar, I. 2007. Agriculture on peat in Malaysia: Is it wise? MARDI/RESTORPEAT
workshop on Wise Use of Tropical Peatland, April 5-6.
Johor Baharu, Malaysia.
Aminur, M.R., Kolay, P.K. & Taib, S.N.L. 2009. Effect of admixtures on the stabilization of peat soil from Sarawak.
Indian Geotechnical Conference 2009.
pp. 410-414.
Andriesse,
J.P. 1988. Nature and management of tropical
peat soils. FAO Soil Bulletin 59.
Rome: FAO. p. 179.
Abdul Jamil, M.A., Chow, W.T., Chan, Y.K. & Siew, K.Y. 1989. Land use of peat in Peninsular Malaysia. Bengkel
Kebangsaan Penyelidikan dan Pembangunan Tanah Gambut.
Serdang, Selangor: MARDI. pp. 21-22.
ASTM. 1994. Annual Book of ASTM Standards, Soil and Rock, vol 04.08,
Philadelphia: American Society for Testing and Materials.
Axelsson, K., Johansson, S.E. & Anderson, R. 2002. Stabilization of Organic Soils by Cement and Puzzolanic Reactions-
Feasibility Study. Swedish Deep Stabilization Research
Centre, Report 3. p. 51.
Basha, E.A., Hashim, R., Mahmud, H.B. & Muntohar, A.S. 2004. Stabilization of residual soil with rice husk and cement. Construction
and Building Materials 19: 448-453.
Bediako, M. & Frimpong, A.O. 2013. Alternative binders for increased sustainable construction in Ghana-A
guide for building professional. Material Sciences and
Apllications 4: 20-28.
Bergado,
D.T. 1996. Soil compaction and soil stabilization
by admixtures. Proceedings of the
Seminar on Ground Improvement Application to Indonesians Soft
Soils, Jakarta, Indonesia. pp. 23-26.
Boobathiraja, S., Balamurugan, P., Dhansheer, M. & Adhikari,
A. 2014. Study on strength of peta soil stabilised with cement and other
pozzolanic materials. International Journal of Civil Engineering
Research 5(4): 431-438.
British Standard Institution 1377. 1990a.
Methods of Test for Soil for Civil Engineering Purposes-Part
2: Classification Tests. BS1377, London, ISBN: 0580178676,
p. 68.
British Standard Institution 1377. 1990b.
Methods of Test for Soil for Civil Engineering Purposes-Part
4: Compaction-Related Tests. BS1377, London, ISBN: 0580180700,
p. 70.
British Standard Institution 1377. 1990c.
Methods of Test for Soil for Civil Engineering Purposes-Part
5: Compressibility, Permeability and Durability Tests. BS1377,
London, ISBN: 0580180301, p. 42.
Deboucha, S., Hashim, R. & Alwi, A. 2008. Engineering
properties of stabilized tropical peat soils. Electronic Journal
of Geotechnical Engineering 13(E): 1-9.
Deboucha, S. & Hashim, R. 2010. Effect
of OPC and PFA cement on stabilized peat bricks. International
Journal of the Physical Sciences 5(11): 1671-1677.
Deboucha, S. & Hashim, R. 2009. Durability and swelling of tropical stabilized peat soils.
Journal of Applied Sciences 9(13): 2480-2484.
Department of Irrigation & Drainage Sarawak (DIDS). 2008. http://www.did.sarawak.gov.my.
Duraisamy, Y., Huat, B.B.K. & Muniandy, R. 2009. Compressibility
behaviour of fibrous peat reinforced with cement columns. Geotechnical
and Geological Engineering 27: 619-629.
Duraisamy, Y., Huat, B.B.K. & Aziz, A.A. 2007. Engineering properties and compressibility behaviour of tropical peat
soil. American Journal of Applied Sciences 4(10):
768-773.
Eriktius, D.T., Leong, E.C. & Rahardjo, H. 2001. Shear
strength of peaty soil-cement mixes. Proceedings
of 3rd International Conference on Soft Soil Engineering, Hong
Kong. pp. 551- 556.
Hartlen, J. & Wolski, W. 1996. Embankments on Organic Soils. 1st ed. Amsterdam: Elsevier
Science.
Hashim, R. & Islam, S. 2008a. A model study to determine engineering properties of peat soil and
effect on strength after stabilisation. European Journal
of Scientific Research 22(2): 205-215.
Hashim, R. & Islam, S. 2008b. Engineering properties of peat soils in Peninsular, Malaysia.
Journal of Applied Sciences 8(22): 4215-4219.
Huat,
B.B.K., Asadi, A. & Kazemian, S. 2009. Experimental
investigation on geomechanical properties of tropical organic
soils and peat. American Journal of Engineering and
Applied Sciences 2(1): 184-188.
Huat, B.B.K., Maail, S. & Mohamed, T.A. 2005. Effect of chemical admixtures on the engineering properties of tropical
peat soils. American Journal of Applied Sciences 2(7):
1113-1120.
Islam, M.S. & Hashim, R. 2008. Use of mackintosh probe test for field investigation in peat soil.
Proceedings of the International Conference,
May 26-27, Best Western Premier Seri Pacific Kuala Lumpur, Malaysia.
p. 27.
Jayawardane, D.L.N.B., Ukwatta, U.P.A.S., Weerakoon, W.M.N.R. &
Pathirana, C.K. 2012. Physical and chemical properties
of fly ash based Portland pozzolana cement. Civil
Engineering Research Exchange Symposium 2012, University of
Ruhuna, India. pp. 8-11.
Kalantari,
B. & Prasad, A. 2014. A study of the effect of various curing techniques on the strength
of stabilized peat. Transportation Geotechnics 1: 119-128.
Kaya, Z., Cayabatmaz, S., Kara, H.B. & Uncuoglu, E. 2013.
Determination of the properties of Kayseri peat.
Proceedings of 2nd International Balkan Conference on Challenges
of Civil Engineering, 23-25 May, Epoka University Tirana Albania.
pp. 882-889.
Kolay,
P.K., Sii, H.Y. & Taib, S.N.L. 2011. Tropical peat soil stabilization
using class F pond ash from coal fired power plant. International
Journal of Civil and Environmental Engineering 3(2): 79-83.
Kolay,
P.K. & Pui, M.P. 2010. Peat stabilization using
gypsum and fly ash. Journal of Civil Engineering,
Science and Technology 1: 2.
Landva,
A.O. & Pheeney, P.E. 1980. Peat fabric and structure.
Canadian Geotechnical Journal 17(3): 416-435.
Lo, S.R. &
Wardani, S.P.R. 2002. Strength and dilatancy of stabilized by
cement and fly ash mixture. Canadian Geotechnical Journal 39(1):
77-89.
Lorenzo,
A.L. & Bergado, D.T. 2004. Fundamental parameters
of cement-admixed clay-new approach. Journal of Geotechnical
and Geoenvironmental Engineering 130(10): 1042-1050.
Melling,
L., Ambak, K., Osman, J. & Husni, A. 1999. Water management
for the sustainable utilisation of peat soils for agriculture.
International Conference & Workshop on Tropical Peat Swamps,
27-29 July, Penang, Malaysia.
Mohidin,
M.N., Zainorabdin, A., Madun, A., Yusof, M.F., Mokhtar, M. &
Chew, Y.F. 2007.
Some index properties on Rengit peat soil stabilize with cement-lime.
Prosiding Kebangsaan Awam 07, 29-31 May, Langkawi Malaysia.
Mutert, E., Fairhurst,
T.H. & von Uekῠll, H.R. 1999. Agronomic
management of oil palm on deep peat. Better Crops International
13(1): 22-27.
Nontananandh,
S., Thakon, Y. & Sanupong, B. 2002. Scanning electron
microscopic investigation of cement stabilized soil. Proceedings
of the 8th National Convention of Civil Engineering 2: 120-125.
Sariosseiri,
F. & Muhunthan, B. 2009. Effect of cement treatment
on geotechnical properties of some Washington State soils.
Engineering Geology 104: 119-125.
Shamshuddin Jusop.
1981. Asas Sains Tanih. Kuala Lumpur: Dewan Bahasa dan
Pustaka.
Silvius, M. 2007.
Palm oil expansion could boos carbon: The growing use of palm
oil for biofuels production is often in conflict with environmental
concerns. Bioenergy Business 1: 14-15.
Skempton,
A.W. & Petley, D.J. 1970. Ignition loss and otherproperties
of peats and clays from Avonmouth, King’s Lynnand Cranberry Moss.
Géotechnique 20(4): 343-356.
Sowers,
G.F. 1979.
Introductory Soil Mechanics and Foundations.
4th ed. New York: Macmillan. p.
621.
Tang,
B.L., Bakar, I. & Chan, C.M. 2011. Reutilization
of organic and peat soils by deep cement mixing. World
Academy of Science, Engineering and Technology 50: 674-679.
Teja,
P.R.K., Suresh, K. & Uday, K.V. 2015. Effect of curing time on behaviour
and engineering properties of cement treated soils. International
Journal of Innovation Research in Science, Engineering and Technology
4(6): 4649-4657.
van Impe, W. 1989.
Soil Improvement Techniques and Their Evolution. London:
Taylor & Francis.
Von Post, L. 1922.
SGU peat inventory and some preliminary results.
Svenska Mosskulturføreningens Tidsskrift 36: 1-27.
Wetlands
International.
2010. A Quick Scan of Peatlands in Malaysia. Petaling Jaya,
Malaysia: Wetlands International- Malaysia. p.
50.
Whitlow,
R. 2001.
Basic Soil Mechanics. 4th
ed. Harlow, Essex, UK: Prentice Hall.
Wong,
L.S., Hashim, R. & Ali, F.H. 2008. Behaviour of stabilized peat soils
in unconfined compression tests. American Journal of Engineering
and Applied Sciences 1(4): 274-279.
Zukri,
A. 2013.
Pekan soft clay treated with hydrated lime as a method of soil
stabilizer. Malaysian Technical Universities Conference on Engineering & Technology
2012, MUCET 2012, Part 3 - Civil and Chemical Engineering.
Procedia Engineering 53: 37-41.
*Pengarang untuk surat-menyurat; email:
fahmirina@gmail.com