Sains Malaysiana 45(11)(2016): 1641–1647
Histological Analysis of Motoneuron
Survival and Microglia Inhibition After
Nerve Root Avulsion Treated with Nerve Graft Implantation and
Minocycline: An Experimental Study
(Analisis Histologi Kemandirian Motoneuron dan Perencatan Mikroglia Selepas Avulsi Akar Saraf Dirawat
dengan Penempelan
Tisu Cantuman dan
Minosiklin: Suatu
Kajian Eksperimen)
FAIZUL H.
GHAZALI1*, WUTIAN
WU4
& JAFRI M. ABDULLAH1,2,3
1Center for Neuroscience
Service and Research, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 2, 16150 Kelantan
Darul Naim, Malaysia
2Department of Neurosciences,
School of Medical Sciences, Universiti
Sains Malaysia
Kubang Kerian 2, 16150 Kelantan Darul Naim,
Malaysia
3School of Medical
Sciences, Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
4Department of Anatomy,
Faculty of Medicine, University of Hong Kong, China
Diserahkan: 8 September 2014/Diterima:
24 Mac 2016
ABSTRACT
Motor vehicle accidents are
the most common cause of injuries involving avulsion of the brachial
plexus in humans, resulting in debilitating motor dysfunction.
Lack of an established animal model to test drug treatments hinders
the introduction of new pharmacological agents. Avulsion injury
of cervical ventral roots can be replicated in rats, resulting
in a progressive loss of the motoneurons
and increase in neurotoxic expression of microglia. This is a
report on the effect of prompt nerve implantation and minocycline
treatment on the suppression of microglia activation and survival
of motoneurons. 20 adult female Sprague-Dawley
rats were used for this study, which was approved by the Animal
Ethical Committee, USM (approval
number /2011/(73)(346)). The animals
underwent surgical avulsion of the C6 nerve root, followed by
reimplantation with peripheral nerve
graft and treatment with intraperitoneal minocycline. At 6 weeks
postoperatively, immunohistochemistry using primary antibody Iba1
(microglia) and nicotinamide adenine dinucleotide phosphate diaphorase
(NADPh) with neutral-red
staining (motoneuron) under flourescence microscopy was performed at the C6 spinal cord
segment and then quantified. This study showed significant
reduction of microglia expression in the study group; mean ranks
of control and study group were 15.2 and 11.6, respectively; U=9.5,
Z=3.02, p<0.05. However, this did not translate into
a significant increase of motoneuron survival in the combined group; the mean ranks
of control and study group were 40.6 and 41.6, respectively; U=44.5,
Z=-.0378, p>0.05. This may be due to the effect of the
surgery; the surgery has the potential to cause additional trauma
to the cord parenchyma, leading to further motoneuron loss and an increase in scarring around the avulsed
region, thus impeding regeneration of the motoneuron.
Keywords: Avulsion; microglia;
minocycline; motoneuron; peripheral
nerve implantation
ABSTRAK
Kemalangan kenderaan bermotor
adalah punca
paling biasa kecederaan yang melibatkan avulsi pleksus brakium pada manusia yang mengakibatkan kelemahan fungsi motor. Kekurangan model haiwan yang mantap untuk menguji rawatan
ubat menghalang
pengenalan agen baru farmakologi. Kecederaan avulsi pangkal rahim ventral akar boleh direplikasi pada tikus yang mengakibatkan kehilangan motoneuron secara progresif dan peningkatan
dalam pengekspresan
neurotoksik mikroglia. Kertas ini membincangkan tentang kesan implantasi
saraf pantas
dan rawatan minosiklin
ke atas penidasan
pengaktifan mikroglia
dan kemandirian motoneuron. 20 tikus dewasa betina Sprague-Dawley digunakan untuk kajian ini dan
telah diluluskan
oleh Jawatan Kuasa
Etika Haiwan,
USM
(nombor kelulusan/2011/(73)(346)). Tikus tersebut telah
menjalani pembedahan
avulsi pada akar
saraf C6, diikuti
implantasi semula dengan cantuman saraf periferi dan rawatan dengan
minosiklin intraperitoneum.
Selepas 6 minggu
pascabedah, imunohistokimia menggunakan antibodi Iba1 utama (mikroglia) dan nikotinamida adenina dinukleotida fosfat diaforase (NADPh) dengan pewarnaan merah neutral (motoneuron) di bawah mikroskop berpendarflour telah dijalankan pada segmen saraf tunjang
C6 dan kemudian
dikuantitikan. Kajian ini menunjukkan penurunan pengekspresan mikroglia yang ketara dalam kumpulan kajian; pangkat min kumpulan kawalan dan kajian masing-masing
adalah 15.2 dan
11.6; U=9.5, Z=3.02,p<0.05.
Walau bagaimanapun,
ini tidak pula diterjemahkan kepada pertambahan ketara kemandirian motoneuron dalam kumpulan gabungan; pangkat min kumpulan kawalan dan kajian masing-masing
adalah sebanyak
40.6 dan 41.6; U=44.5, Z=-.0378,p>0.05. Ini mungkin
disebabkan oleh
kesan pembedahan; pembedahan tersebut berpotensi untuk menyebabkan trauma tambahan kepada parenkima tunjang yang membawa kepada kehilangan motoneuron lebih banyak dan peningkatan
parut di sekitar
kawasan avulsi, oleh itu menghalang
pertumbuhan semula
motoneuron.
Kata kunci: Avulsi;
mikroglia; minosiklin;
motoneuron; penempelan saraf periferi
RUJUKAN
Afshari,
F.T., Kappagantula, S. & Fawcett,
J.W. 2009. Extrinsic and intrinsic factors controlling axonal regeneration after
spinal cord injury. Expert Rev. Mol. Med. 11: e37.
Arvin, K.L., Han, B.H., Du, Y., Lin, S.Z., Paul, S.M. & Holtzman, D.M.
2002. Minocycline markedly protects the neonatal brain against
hypoxic-ischemic injury. Ann. Neurol. 52: 54-61.
Barbizan,
R. & Oliveira, A.L.R. 2010. Impact of acute inflammation
on spinal motoneuron synaptic plasticity
following ventral root avulsion research. Journal of
Neuroinflammation 7: 29.
Bergerot,
A., Shortland, P.J., Anand,
P., Hunt, S.P. & Carlstedt, T. 2004. Co-treatment with
riluzole and GDNF is necessary for functional
recovery after ventral root avulsion injury. Exp. Neurol.
187(2) 359-366.
Bigbee,
A.J., Crown, E.D., Ferguson, A.R., Roland, R.R., Tillakaratne,
N.J., Grau, J.W. & Edgerton, V.R. 2007. Two chronic motor
training paradigms differentially influence acute instrumental
learning in spinally transected rats. Behav. Brain Res. 180(1): 95-101.
Block, M.L. &
Hong, J.S. 2005. Microglia and inflammation-mediated neurodegeneration:
multiple triggers with a common mechanism. Prog. Neurobiol.
76(2): 77-98.
Carlstedt, T. 2009. Nerve root replantation. Neurosurg.
Clin. N.
Am. 20(1): 39-50.
Chew, D.J., Carlstedt, T. & Shortland, P.J. 2011. A comparative histological analysis of two models
of nerve root avulsion injury in the adult rat. Neuropathology
and Applied Neurobiology 37: 613-632.
Chu,
T.H., Li, S.Y., Guo, A., Wong, W.M.,
Yuan, Q. & Wu, W. 2009.
Implantation of neurotrophic factor treated sensory nerve graft
enhances survival and axonal regeneration of motoneurons
after spinal root avulsion. J. Neuropathol.
Exp. Neurol. 68(1): 94-101.
Havton,
L.A. & Carlstedt, T. 2009. Repair and rehabilitation of plexus and root avulsions in animal models
and patients. Curr. Opin. Neurol. 22(6): 570-574.
Hoang,
T.X., Akhavan, M., Wu, J. & Havton,
L.A. 2008.
Minocycline protects motor but not autonomic neurons after cauda
equina injury. Exp. Brain Res. 189(1): 71-77.
Holtzer,
C.A.J., Marani, E., Lakke,
E.A.J.F. & Thomeer, R.T.W.M. 2002. Repair of ventral
root avulsions of the brachial plexus: A review. J. Peripher. Nerv. Syst. 7(4): 233-242.
Htut,
M., Misra, P., Anand,
P., Birch, R. & Carlstedt, T. 2006. Pain phenomena and sensory recovery following brachial plexus avulsion
injury and surgical repairs. The Journal of Hand Surgery:
British & European Volume 31(6): 596-605.
Koliatsos,
V.E., Price, W.L., Pardo, C.A. & Price, D.L. 1994. Ventral root avultion: An experimental model for death of adult motor neurons.
J. Comp. Neurol. 342(1): 35-44.
Kumar, A., Aditi,
V., Kumar, P. & Kalonia, H. 2012.
Potential role of licofelone, minocycline
and their combination against chronic fatigue stress induced behavioral,
biochemical and mitochondrial alterations in mice. Pharmacological
Reports 64(5): 1105-1115.
Noguchi, T., Ohta, S., Kakinoki, R., Kaizawa, Y. & Matsuda, S. 2013. A new
cervical nerve root avulsion model using a posterior extra-vertebral
approach in rats. Journal of Brachial Plexus and Peripheral
Nerve Injury 8: 8.
Plane,
J.M., Shen, Y., Pleasure, D.E. & Deng, W. 2010. Prospects for minocycline neuroprotection. Arch. Neurol.
67(12): 1442-1448.
Scholz,
J. & Woolf, C.J. 2007. The neuropathic pain triad: neurons, immune
cells and glia. Nat. Neurosci. 10: 1361- 1368.
Sharma,
V.K., Goyal, A. & Ganti, S.S. 2010. Minocycline, an
antibiotic and a neuroprotective: Justifying role in Alzheimer’s
disease. Asian Journal of Pharmaceutical and Clinical Research
3(3): 142-145.
Songcharoen, P. 2008. Management of brachial plexus injury in adults. Scand. J.
Surg. 97(4): 317-323.
Stirling, D.P., Khodarahmi, K., Liu, J., McPhail, L.T., McBride, C.B., Steeves,
J.D., Ramer, M.S. & Tetzlaff, W. 2004. Minocycline treatment
reduces delayed oligodendrocyte death, attenuates axonal dieback,
and improves functional outcome after spinal cord injury. J.
Neurosci. 24: 2182-2190.
Su, H., Yuan, Q.,
Qin, D., Yang, X., Wong, W.M., So, K.F. & Wu, W. 2013. Ventral
root re-implantation is better than peripheral nerve transplantation
for motoneuron survival and regeneration after spinal root avulsion
injury. BMC Surgery 13: 21.
Tikka,
T.M. & Koistinaho, J.E. 2001. Minocycline provides
neuroprotection against Nmethyl-D-aspartate
neurotoxicity by inhibiting microglia. J. Immunol.
166(12): 7527-7533.
WHO Drug Information. 1997. Volume 11, Number 4. Geneva: World Health Organization.
p. 257.
*Pengarang untuk surat-menyurat; email: dr_leyz@yahoo.com