Sains Malaysiana 43(4)(2014): 643–648
Comparing
Groups Using Robust H Statistic with Adaptive Trimmed Mean
(Perbandingan Kumpulan Menggunakan H Statistik Tegar dan Min Terpangkas Suai)
NUR FARAIDAH MUHAMMAD DI1*, SHARIPAH SOAAD SYED YAHAYA2& SUHAIDA
ABDULLAH2
139.
JBC, Taman Bukit Cermin, 28400 Mentakab,
Pahang Darul Makmur,
Malaysia
2School
of Quantitative Science, College of Arts and Sciences
University
Utara Malaysia, 06010 UUM Sintok, Kedah Darul Aman, Malaysia
Diserahkan: 23 Julai 2012/Diterima: 14 Ogos 2013
ABSTRACT
An alternative robust method for testing the equality of central
tendency measures was developed by integrating H Statistic with adaptive trimmed mean using
hinge estimator, HQ. H Statistic is known for its
ability to control Type I error rates and HQ is a robust location
estimator. This robust estimator used asymmetric trimming technique, where it
trims the tail of the distribution based on the characteristic of that
particular distribution. To investigate on the performance (i.e. robustness) of
the procedure, some variables were manipulated to create conditions which are
known to highlight its strengths and weaknesses. Bootstrap method was used to
test the hypothesis. The integration seemed to produce promising robust procedure
that is capable of addressing the problem of violations to the assumptions.
About 20% trimming is the appropriate amount of trimming for the procedure,
where this amount is found to be robust in most conditions. This procedure was
also proven to be robust as compared to the parameteric (ANOVA)
and non-parametric (Kruskal-Wallis) methods.
Keywords: Asymmetric trimmed mean; bootstrap; H Statistic; hinge estimator; robust
statistics; Type I error rates
ABSTRAK
Kaedah alternatif yang teguh bagi menguji
persamaan sukatan
kecenderungan memusat telah dibentuk dengan mengintegrasikanH Statistik
dengan min terpangkas suai menggunakan penganggar engsel, HQ.
H Statistik
dikenali kerana kebolehannya untuk mengawal ralat jenis I dan HQ adalah
penganggar lokasi
yang teguh. Penganggar teguh ini
menggunakan teknik pemangkasan asimetri, dengan memangkas hujung taburan berdasarkan ciri-ciri taburan tersebut. Bagi menguji prestasi (iaitu keteguhan) prosedur, beberapa pemboleh ubah dimanipulasi
untuk melihat
kekuatan dan kelemahan
prosedur. Kaedah
Butstrap
digunakan untuk
menguji hipotesis. Integrasi
ini menghasilkan prosedur teguh yang mampu menangani masalah pelanggaran andaian. Nilai pemangkas yang sesuai
bagi prosedur
ini ialah 20% dan
didapati tegar
dalam kebanyakan keadaan yang
dikaji. Prosedur
ini juga telah
terbukti teguh
berbanding kaedah parametrik (ANOVA) dan kaedah tidak berparametrik
(Kruskal-Wallis).
Kata kunci: Butstrap; H statistik;
min terpangkas asimetri;
penganggar engsel; ralat jenis I; statistik teguh
RUJUKAN
Baguio, C.B. 2008. Trimmed mean as an adaptive
robust estimator of a location parameter for Weibull distribution. World Academy of Science, Engineering and Technology 42:
681-686.
Bradley, J.V. 1978. Robustness? British
Journal of Mathematical and Statistical Psychology 31: 144-152.
Hogg, R.V. 1974. Adaptive robust procedures: A
partial review and some suggestions for future applications and theory. Journal
of the American Statistical Association 69: 909-923.
Keselman, H.J., Wilcox, R.R., Lix,
L.M., Algina, J. & Fradette,
K. 2007. Adaptive robust estimation and testing. British Journal of
Mathematical and Statistical Psychology 60: 267-293.
Keselman, H.J., Algina, J.
& Fradette, K. 2005. Robust confidence intervals
for effect size in the two-group case. Journal of Modern Applied Statistical
Methods 4(2): 353-371.
Luh, W.M. & Guo, J.H.
1999. A powerful transformation trimmed mean method for one-way fixed effects
ANOVA model under non-normality and inequality of variances. British Journal
of Mathematical and Statistical Pscycology52(2):
303-320.
Othman, A.R., Keselman, H.J., Padmanabhan, A.R., Wilcox, R.R & Fradette,
K. 2004. Comparing measures of the 'typical'
score across treatment groups. British Journal of Mathematical
and Statistical Psychology 57(2): 215-234.
Reed,
J.F. & Stark, D.B. 1996. Hinge estimators of location: Robust to asymmetry. Computer Methods and Programs in Biomedicine 49(1): 11-17.
Schrader,
R.M. & Hettmansperger, T.P. 1980. Robust analysis
of variance based upon a likelihood ratio criterion. Biometrika 67(1): 93-101.
Syed Yahya, S.S. 2005. Robust statistical procedures for
testing the equality of central tendency parameters under skewed distribution.
PhD thesis. Universiti Sains Malaysia, Penang (Unpublished).
Wilcox,
R.R. 2005. Trimmed Means. Encyclopedia of Statistics in Behavioral Science 4:
2066-2067.
Wilcox, R.R. 2012. Introduction to Robust
Estimation and Hypothesis Testing. 3rd ed. San Diego, CA: Academic
Press.
Wu, P.C. 2007. Modern one-way ANOVA F methods:
Trimmed means, one step M-estimators and bootstrap methods. Journal
of Quantitative Research 1: 155-172.
Yu, C.H. 2010. Parametric Tests.
Creative Wisdom: http://www. creative-wisdom.com/teaching/WBI/parametric_test.shtml.
Accessed on January 10, 2010.
Zar, J.H. 1996. ANOVA Assumptions. Biostatistical
Analysis. 3rd ed. New Jersey: Prentice Hall Inc. p. 128.
*Pengarang untuk surat-menyurat; email: nurfaraidah@gmail.com
|