Sains Malaysiana 43(4)(2014): 629–636
Stochastic
Lead Time Demand Estimation via Monte Carlo Simulation Technique in
Supply
Chain Planning
(Anggaran Permintaan Masa Lopor Stokastik Melalui Teknik Simulasi
Monte Carlo dalam Perancangan Rantaian Bekalan)
MOHAMAD MAHDAVI
& MOJTABA MAHDAVI*
Department of Industrial Engineering, Islamic
Azad University, Najafabad Branch, Isfahan Iran
Diserahkan: 12 Mei 2013/Diterima: 18
Julai 2013
ABSTRACT
This paper considers a Monte Carlo simulation based method for estimating
cycle stocks (production lot-sizing stocks) in a typical batch production
system, where a variety of products is scheduled for production
at determined periods of time. Delivery time is defined as the maximum
lead time and pre-assembly processing time of the product's raw
materials in the method. The product's final assembly cycle and
delivery time, which were obtained via the production schedule and
supply chain simulation, respectively, were both considered to estimate
the demand distribution of product based on total duration. Efficient
random variates generators were applied to model the lead time of
the supply chain's stages. In order to support the performance reliability
of the proposed method, a real case study is conducted and numerically
analyzed.
Keywords: Cycle stock; inventory; lead time demand; Monte Carlo;
supply chain
ABSTRAK
Kertas ini mengambil kira kaedah simulasi Monte Carlo untuk
menganggarkan kitaran stok (tempat keluaran-saiz stok) dalam sistem pengeluaran
tipikal kelompok, dengan pelbagai produk dijadualkan untuk pengeluaran pada
jangka masa yang ditetapkan. Dalam kaedah ini, masa penghantaran ditakrifkan
sebagai masa lopor maksimum dan masa sebelum pemprosesan produk bahan mentah.
Kitaran pemasangan akhir produk dan masa penghantaran masing-masing yang
diperoleh melalui jadual pengeluaran dan simulasi rantaian bekalan diambil kira
untuk menganggarkan pembahagian permintaan produk berdasarkan jumlah tempoh.
Penjana pengubah rawak yang cekap digunakan sebagai model masa lopor peringkat
rantaian bekalan. Dalam usaha untuk menyokong kebolehpercayaan prestasi kaedah
penilaian yang dicadangkan, kajian kes sebenar dijalankan dan dianalisis secara
berangka.
Kata kunci: Inventori; kitaran stok, Monte
Carlo; permintaan masa utama; rantaian bekalan
RUJUKAN
Banks, J. & Carson, S.J. 1984. Discrete-event System
Simulation. New Jersey: Prentic-Hall Inc.
Baudet, P., Azzaro-Pantel, C., Domenech, S. & Pibouleau,
L. 1995. A discrete-event simulation approach for scheduling batch processes. Computers
and Chemical Engineering 19(Supplement 1): S633-S638.
Box, G.E.P. & Muller, M.F. 1958. A note on the
generation of random normal deviates. Annuals of Mathematical Statistics 29:
610-611.
Crdenas-Barrón, L.E. 2009. On optimal batch sizing in a multi-stage
production system with rework consideration. European Journal of Operational
Research 196: 1238-1244.
Dogrua, M.K., van Houtumb, G.J. & de Kokb, A.G. 2008.
Newsvendor equations for optimal reorder levels of serial inventory systems
with fixed batch sizes. Operations Research Letters 36: 551-556.
Fishman, G.S. 1978. Principals of Discrete Event
Simulation. New York: Wiley.
Fishman, S.G. 1996. Monte Carlo Concepts, Algorithms, and
Applications. New York: Springer-Verlag.
Fuchino, T., Batres, R., Takahashi, Y. & Naka, Y. 1999.
A combined batch process simulation in a production support environment. Computers
and Chemical Engineering 23(Supplement): S199-S202.
Hoque, M.A. & Goyal, S.K. 2000. An optimal policy for a
single-vendor single-buyer integrated production: Inventory system with
capacity constraint of the transport equipment. Int. J. Production Economics 65: 305-315.
Hoquea, M.A. & Goyal, S.K. 2006. A heuristic solution
procedure for an integrated inventory system under controllable lead-time with
equal or unequal sized batch shipments between a vendor and a buyer. Int. J.
Production Economics 102: 217-225.
Kevork, I.S. 2010. Estimating the optimal order quantity and
the maximum expected profit for single-period inventory decisions. Omega 38:
218-227.
Mohsen, S.S., Thorstenson, A. & Mohammad, R.A.J. 2010.
An integrated vendor-buyer model with stock-dependent demand. Transportation
Research Part E 46: 963-974.
Nair, A. & Closs, D.J. 2006. An examination of the
impact of coordinating supply chain policies and price markdowns on short
lifecycle product retail performance. Int. J. Production Economics 102:
379-392.
Omar, M. & Smith,
D.K. 2002. An optimal batch size for a production system under increasing
time-varying demand process. Com. Ind. Eng. 42: 35-42.
Rau, H. & OuYang, B.C. 2008. An optimal batch size for
integrated production-inventory policy in a supply chain. European Journal
of Operational Research 185: 619-634.
Sarker, R.A., Mustafizul Karim, A.N. & Anwarul Haque,
A.F.M. 1995. An optimal batch size for a production system operating under a
continous supply/demand. Int. J. Ind. Eng. 2(3): 189-198.
Sarker, B.R. & Parija, G.R. 1996. Optimal batch size and
raw material ordering policy for a production system with a fixed-interval, lumpy
demand delivery system. European Journal of Operational Research 89:
593-608.
Sarker, R.A. & Khan, L.R. 1999. An optimal batch size
for a production system operating under periodic delivery policy. Computers
& Industrial Engineering 37(4): 711-730.
Schmeiser, B.W. 1981. Random variate generation: A survey.
In Simulation with Discrete Models: A State of the Art View, edited by
Oren, T.I., Shub, C.M. & Roth, P.F. IEEE. pp. 76-104.
Schmidt, J.W. & Taylor, R.E. 1970. Simulation and
Analysis of Industrial Systems. Homewood, Illinois: Irwin.
Stefanovic, D., Stefanovic, N. & Radenkovic, B. 2009.
Supply network modelling and simulation methodology. Simulation Modelling
Practice and Theory 17: 743-766.
Timpe, C.H. & Kallrath, J. 2000. Optimal planning in large
multi-site production networks. European Journal of Operational Research 126:
422-435.
Vilko, J.P.P. & Hallikas, J.M. 2011. Risk assessment in
multimodal supply chains. International Journal of Production Economics 140(2):
586-595.
Wu, D. & Olson, D.L. 2008. Supply chain risk,
simulation, and vendor selection. Int. J. Production Economics 114:
646-655.
Xua, J., Chena, S., Lin, B. & Bhatnagar, R. 2010.
Optimal production and rationing policies of a make-to-stock production system
with batch demand and backordering. Operations Research Letters 38:
231-235.
Zhao, Y. 2009. Analysis and evaluation of an
Assemble-to-Order system with batch ordering policy and compound Poisson
demand. European Journal of Operational Research 198: 800-809.
*Pengarang untuk surat-menyurat; email: m.mahdavi@pin.iaun.ac.ir
|