Sains Malaysiana 43(4)(2014): 603–609

 

Mechanical and Thermal Properties of Graphene Oxide Filled Epoxy Nanocomposites

(Sifat Mekanik dan Terma Nanokomposit Epoksi Berpengisi Grafin Oksida)

 

 

NOORHAFANITA NORHAKIM1, SAHRIM HJ. AHMAD1, CHIN HUA CHIA1*

& NAY MING HUANG2

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

2Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur

Malaysia

 

Diserahkan: 20 Julai 2012/Diterima: 14 Ogos 2013

 

ABSTRACT

In this study, graphene oxide (GO) filled epoxy nanocomposites were prepared using hot pressed method. The GO was produced using modified Hummers' method. The produced GO at different compositions (0.1, 0.3 and 0.5 wt%) were mixed with epoxy before the addition of hardener using ultra-sonication. The produced epoxy nanocomposites were characterized in terms of mechanical and thermal properties. The mechanical properties of the nanocomposites were significantly enhanced by the addition of GO. About 50% of increment in the flexural strength of the composite sample filled with 0.3 wt% of GO as compared to the neat epoxy sample. However, only slight improvement in the impact strength of the composite were obtained by adding 0.1 wt% of GO.

 

Keywords: Epoxy; graphene oxide; mechanical; nanocomposite

 

ABSTRAK

Dalam kajian ini komposit epoksi berpengisi grafin oksida (GO) disediakan menggunakan kaedah penekanan panas. GO tersebut dihasilkan melalui kaedah Hummers. Penyediaan campuran GO pada komposisi yang berbeza (0.1, 0.3 dan 0.5 wt%) bersama epoksi dilakukan dengan ultrasonik sebelum penambahan agen pengeras. Pencirian sifat mekanik dan terma nanokomposit epoksi dijalankan. Sifat mekanik nanokomposit berjaya dipertingkatkan dengan penambahan GO. Kekuatan lenturan bagi sampel 0.3 wt% GO meningkat sebanyak 50% jika dibandingkan dengan epoksi tanpa pengisi. Walau bagaimanapun, peningkatan yang sedikit telah diperoleh bagi kekuatan impak nanokomposit berpengisi 0.1 wt% GO.

 

Kata kunci: Epoksi; grafin oksida; mekanik; nanokomposit

RUJUKAN

Chen, X., Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J. & Xue, F. 2008. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Materials Science and Engineering: A 492(1-2): 236-242.

Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y. & Kaner, R.B. 2010. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7): 3845-3852.

Fang, M., Wang, K., Lu, H., Yang, Y. & Nutt, S. 2009. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry 19(38): 7098-7105.

Ganguli, S., Roy, A.K. & Anderson, D.P. 2008. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5): 806-817.

Geng, Y., Liu, M.Y., Li, J., Shi, X.M. & Kim, J.K. 2008. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing 39(12): 1876-1883.

Glaskova, T., Zarrelli, M., Aniskevich, A., Giordano, M., Trinkler, L. & Berzina, B. 2012. Quantitative optical analysis of filler dispersion degree in MWCNT–epoxy nanocomposite. Composites Science and Technology 72(4): 477-481.

Huang, N., Lim, H., Chia, C., Yarmo, M. & Muhamad, M. 2011. Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine 6(1): 3443-3448.

Kaynak, C., Orgun, O. & Tincer, T. 2005. Matrix and interface modification of short carbon fiber-reinforced epoxy. Polymer Testing 24(4): 455-462.

Kueseng, K. & Jacob, K.I. 2006. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. European Polymer Journal 42(1): 220-227.

Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. & Lee, J.H. 2012. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polymer Testing 31(1): 31-38.

Lorenz, H., Fritzsche, J., Das, A., Stöckelhuber, K.W., Jurk, R., Heinrich, G. & Klüppel, M. 2009. Advanced elastomer nano-composites based on CNT-hybrid filler systems. Composites Science and Technology 69(13): 2135-2143.

Ma, P.C., Mo, S.Y., Tang, B.Z. & Kim, J.K. 2010. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6): 1824-1834.

Ma, P.C., Kim, J.K. & Tang, B.Z. 2007. Effects of silane functionalization on the properties of carbon nanotube/ epoxy nanocomposites. Composites Science and Technology 67(14): 2965-2972.

Martin-Gallego, M., Verdejo, R., Lopez-Manchado, M.A. & Sangermano, M. 2011. Epoxy-Graphene UV-cured nanocomposites. Polymer 52(21): 4664-4669.

Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S. & Shenoy, V.B. 2010. Hydrogen bondnetworks in graphene oxides nanocomposites paper: Structural and mechanical properties. American Chemical Society 4: 2300-2306.

Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. & Mohajeri, A. 2010. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials and Design 31(9): 4202-4208.

Pervin, F., Zhou, Y., Rangari, V.K. & Jeelani, S. 2005. Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Materials Science and Engineering: A 405(1–2): 246-253.

Potts, J.R., Dreyer, D.R., Bielawski, C.W. & Ruoff, R.S. 2011. Graphene-based polymer nnaocomposites. Polymer 52: 5-25.

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S. & Bhowmick, A.K. 2011. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science 36(5): 638-670.

Sui, G., Zhong, W.H., Liu, M.C. & Wu, P.H. 2009. Enhancing mechanical properties of an epoxy resin using ‘liquid nano-reinforcements’. Materials Science and Engineering: A 512: 139-142.

Theodore, M., Hosur, M., Thomas, J. & Jeelani, S. 2011. Influence of functionalization on properties of MWCNT–epoxy nanocomposites. Materials Science and Engineering: A 528(3): 1192-1200.

Thostenson, E.T. & Chou, T.W. 2006. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14): 3022-3029.

Yang, K. & Gu, M. 2010. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing 41(2): 215-221.

Yang, X., Tu, Y., Li, L., Shang, S. & Tao, X.M. 2010. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials and Interfaces 2(6): 1707-1713.

Zaman, I., Phan, T.T., Kuan, H.C., Meng, Q., Bao La, L.T., Luong, L., Youssf, O. & Ma, J. 2011. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7): 1603-1611.

Zhou, Y., Pervin, F., Biswas, M.A., Rangari, V.K. & Jeelani, S. 2006. Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Materials Letters 60(7): 869-873.

Zhou, Y., Pervin, F., Lewis, L. & Jeelani, S. 2007. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials Science and Engineering: A 452-453(0): 657-664.

 

 

*Pengarang untuk surat-menyurat; email: chia@ukm.my

 

 

sebelumnya