Sains Malaysiana 43(4)(2014): 603–609
Mechanical
and Thermal Properties of Graphene Oxide Filled Epoxy Nanocomposites
(Sifat Mekanik dan Terma
Nanokomposit Epoksi Berpengisi Grafin Oksida)
NOORHAFANITA NORHAKIM1, SAHRIM
HJ.
AHMAD1, CHIN
HUA
CHIA1*
&
NAY
MING
HUANG2
1School of Applied Physics, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
2Physics Department, Faculty of Science,
University of Malaya, 50603 Kuala Lumpur
Malaysia
Diserahkan: 20 Julai 2012/Diterima: 14 Ogos
2013
ABSTRACT
In this study, graphene oxide (GO) filled epoxy nanocomposites were
prepared using hot pressed method. The GO was produced using modified
Hummers' method. The produced GO at different compositions (0.1,
0.3 and 0.5 wt%) were mixed with epoxy before the addition of hardener
using ultra-sonication. The produced epoxy nanocomposites were characterized
in terms of mechanical and thermal properties. The mechanical properties
of the nanocomposites were significantly enhanced by the addition
of GO. About 50% of increment in the flexural strength of the composite
sample filled with 0.3 wt% of GO as compared to the neat epoxy sample.
However, only slight improvement in the impact strength of the composite
were obtained by adding 0.1 wt% of GO.
Keywords: Epoxy; graphene oxide; mechanical; nanocomposite
ABSTRAK
Dalam kajian ini komposit epoksi berpengisi grafin oksida (GO)
disediakan menggunakan kaedah penekanan panas. GO tersebut dihasilkan melalui
kaedah Hummers. Penyediaan campuran GO pada komposisi yang berbeza (0.1, 0.3
dan 0.5 wt%) bersama epoksi dilakukan dengan ultrasonik sebelum penambahan agen
pengeras. Pencirian sifat mekanik dan terma nanokomposit epoksi dijalankan.
Sifat mekanik nanokomposit berjaya dipertingkatkan dengan penambahan GO.
Kekuatan lenturan bagi sampel 0.3 wt% GO meningkat sebanyak 50% jika
dibandingkan dengan epoksi tanpa pengisi. Walau bagaimanapun, peningkatan yang
sedikit telah diperoleh bagi kekuatan impak nanokomposit berpengisi 0.1 wt% GO.
Kata kunci: Epoksi; grafin oksida; mekanik;
nanokomposit
RUJUKAN
Chen, X., Wang, J., Lin, M., Zhong, W., Feng,
T., Chen, X., Chen, J. & Xue, F. 2008. Mechanical and thermal properties of
epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon
nanotubes. Materials Science and Engineering: A 492(1-2): 236-242.
Dubin, S., Gilje, S., Wang, K., Tung, V.C., Cha,
K., Hall, A.S., Farrar, J., Varshneya, R., Yang, Y. & Kaner, R.B. 2010. A
one-step, solvothermal reduction method for producing reduced graphene oxide
dispersions in organic solvents. ACS Nano 4(7): 3845-3852.
Fang, M., Wang, K., Lu, H., Yang, Y. & Nutt,
S. 2009. Covalent polymer functionalization of graphene nanosheets and
mechanical properties of composites. Journal of Materials Chemistry 19(38):
7098-7105.
Ganguli, S., Roy, A.K. & Anderson, D.P.
2008. Improved thermal conductivity for chemically functionalized exfoliated
graphite/epoxy composites. Carbon 46(5): 806-817.
Geng, Y., Liu, M.Y., Li, J., Shi, X.M. &
Kim, J.K. 2008. Effects of surfactant treatment on mechanical and electrical
properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science
and Manufacturing 39(12): 1876-1883.
Glaskova, T., Zarrelli, M., Aniskevich, A.,
Giordano, M., Trinkler, L. & Berzina, B. 2012. Quantitative optical
analysis of filler dispersion degree in MWCNT–epoxy nanocomposite. Composites
Science and Technology 72(4): 477-481.
Huang, N., Lim, H., Chia, C., Yarmo, M. &
Muhamad, M. 2011. Simple room-temperature preparation of high-yield large-area
graphene oxide. International Journal of Nanomedicine 6(1): 3443-3448.
Kaynak, C., Orgun, O. & Tincer, T. 2005.
Matrix and interface modification of short carbon fiber-reinforced epoxy. Polymer
Testing 24(4): 455-462.
Kueseng, K. & Jacob, K.I. 2006. Natural
rubber nanocomposites with SiC nanoparticles and carbon nanotubes. European
Polymer Journal 42(1): 220-227.
Kuila, T., Bose, S., Mishra, A.K., Khanra, P.,
Kim, N.H. & Lee, J.H. 2012. Effect of functionalized graphene on the
physical properties of linear low density polyethylene nanocomposites. Polymer
Testing 31(1): 31-38.
Lorenz, H., Fritzsche, J., Das, A.,
Stöckelhuber, K.W., Jurk, R., Heinrich, G. & Klüppel, M. 2009. Advanced
elastomer nano-composites based on CNT-hybrid filler systems. Composites
Science and Technology 69(13): 2135-2143.
Ma, P.C., Mo, S.Y., Tang, B.Z. & Kim, J.K.
2010. Dispersion, interfacial interaction and re-agglomeration of
functionalized carbon nanotubes in epoxy composites. Carbon 48(6):
1824-1834.
Ma, P.C., Kim, J.K. & Tang, B.Z. 2007.
Effects of silane functionalization on the properties of carbon nanotube/ epoxy
nanocomposites. Composites Science and Technology 67(14): 2965-2972.
Martin-Gallego, M., Verdejo, R., Lopez-Manchado,
M.A. & Sangermano, M. 2011. Epoxy-Graphene UV-cured nanocomposites. Polymer 52(21): 4664-4669.
Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S.
& Shenoy, V.B. 2010. Hydrogen bondnetworks in graphene oxides
nanocomposites paper: Structural and mechanical properties. American
Chemical Society 4: 2300-2306.
Montazeri, A., Javadpour, J., Khavandi, A.,
Tcharkhtchi, A. & Mohajeri, A. 2010. Mechanical properties of multi-walled
carbon nanotube/epoxy composites. Materials and Design 31(9): 4202-4208.
Pervin, F., Zhou, Y., Rangari, V.K. &
Jeelani, S. 2005. Testing and evaluation on the thermal and mechanical
properties of carbon nano fiber reinforced SC-15 epoxy. Materials Science
and Engineering: A 405(1–2): 246-253.
Potts, J.R., Dreyer, D.R., Bielawski, C.W. &
Ruoff, R.S. 2011. Graphene-based polymer nnaocomposites. Polymer 52:
5-25.
Sengupta, R., Bhattacharya, M., Bandyopadhyay,
S. & Bhowmick, A.K. 2011. A review on the mechanical and electrical
properties of graphite and modified graphite reinforced polymer composites. Progress
in Polymer Science 36(5): 638-670.
Sui, G., Zhong, W.H., Liu, M.C. & Wu, P.H.
2009. Enhancing mechanical properties of an epoxy resin using ‘liquid
nano-reinforcements’. Materials Science and Engineering: A 512: 139-142.
Theodore, M., Hosur, M., Thomas, J. &
Jeelani, S. 2011. Influence of functionalization on properties of
MWCNT–epoxy nanocomposites. Materials Science and Engineering: A 528(3):
1192-1200.
Thostenson, E.T. &
Chou, T.W. 2006. Processing-structure-multi-functional property relationship in
carbon nanotube/epoxy composites. Carbon 44(14): 3022-3029.
Yang, K. & Gu, M. 2010. Enhanced thermal conductivity of
epoxy nanocomposites filled with hybrid filler system of
triethylenetetramine-functionalized multi-walled carbon
nanotube/silane-modified nano-sized silicon carbide. Composites Part A:
Applied Science and Manufacturing 41(2): 215-221.
Yang, X., Tu, Y., Li, L., Shang, S. & Tao, X.M. 2010.
Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials
and Interfaces 2(6): 1707-1713.
Zaman, I., Phan, T.T., Kuan, H.C., Meng, Q., Bao La, L.T.,
Luong, L., Youssf, O. & Ma, J. 2011. Epoxy/graphene platelets
nanocomposites with two levels of interface strength. Polymer 52(7):
1603-1611.
Zhou, Y., Pervin, F., Biswas, M.A., Rangari, V.K. &
Jeelani, S. 2006. Fabrication and characterization of montmorillonite
clay-filled SC-15 epoxy. Materials Letters 60(7): 869-873.
Zhou, Y., Pervin, F., Lewis, L. & Jeelani, S. 2007.
Experimental study on the thermal and mechanical properties of multi-walled
carbon nanotube-reinforced epoxy. Materials Science and Engineering: A 452-453(0):
657-664.
*Pengarang untuk surat-menyurat; email: chia@ukm.my
|