Sains Malaysiana 43(4)(2014): 521–528
Bioconcentration and Translocation Efficiency of
Metals in Paddy (Oryza sativa):
A
Case Study from Alor Setar,
Kedah, Malaysia
(Biopemekatan dan
Kecekapan Translokasi
Unsur Logam dalam
Padi (Oryza sativa):
Suatu Kajian Kes dari Alor Setar,
Kedah, Malaysia)
LOOI LEY JUEN, AHMAD ZAHARIN ARIS*, LIM WAN YING & HAZZEMAN HARIS
Environmental
Forensics Research Centre, Universiti Putra Malaysia
43400
UPM Serdang, Selangor, Malaysia
Diserahkan: 13 Disember 2012/Diterima: 15 Julai 2013
ABSTRACT
This study aimed to measure and compares
the concentration of metals accumulated in various parts (grains,
stems and roots) of paddy (Oryza sativa). Thirty samples were
collected from selected paddy field in Alor Setar, Kedah, Malaysia.
Metals (75As,
9Be,
114Cd,
59Co,
52Cr
and 208Pb) concentration in various parts
of the paddy and soil were analysed by using the sensitive Inductively
Coupled Plasma-Mass Spectrometry (ICP-MS). Bioconcentration factor
(BCF) and translocation ratio were
calculated based on the concentration of metals obtained. The mean
concentration (mg/kg) of metals in grain samples were 0.06±0.12
for 75As, 0.0038±0.0037 for 9Be, 0.01±0.01 for 114Cd,
0.14±0.19 for 59Co
and 0.21±0.15 for 208Pb while 52Cr
concentration in all samples were below the ICP-MS
detection limit. From the calculated translocation
ratio, absorption of paddy plant had relation: root > stem >>
grain. This study showed that measured concentration of metals in
grain samples were all below the maximum permitted proportion (mg/kg)
of Fourteenth Schedule (Regulation 38) of the Malaysian Food Regulation
1985.
Keywords: Bioconcentration factor (BCF); metals; paddy (Oryza sativa);
translocation ratio
ABSTRAK
Kajian ini
bertujuan untuk mengukur dan membandingkan kepekatan unsur logam
yang terkumpul di dalam pelbagai bahagian (bijian, batang dan akar)
padi (Oryza sativa). Tiga puluh sampel telah dikumpulkan dari sawah padi yang terpilih
di Alor Setar, Kedah, Malaysia. Kepekatan
unsur logam (75As,
9Be,
114Cd,
59Co,
52Cr
and 208Pb) dalam
pelbagai bahagian padi dan tanah telah ditentukan dengan menggunakan
peralatan sensitif Spektrometri Jisim-Plasma Gandingan Induktif
(ICP-MS). Faktor
biopemekatan (BCF) dan nisbah translokasi
telah dikira berdasarkan kepekatan logam yang diperoleh.
Purata kepekatan (mg/kg) unsur logam dalam sampel bijian adalah
0.06±0.12 untuk 75As, 0.0038±0.0037 untuk 9Be, 0.01±0.01
untuk 114Cd,
0.14±0.19 untuk 59Co dan 0.21±0.15 untuk 208Pb manakala 52Cr
kepekatan dalam semua sampel adalah di bawah had pengesanan ICP-MS.
Daripada nisbah translokasi yang dikira, hubungan penyerapan padi:
akar > batang >> bijian. Kajian ini
menunjukkan bahawa kepekatan unsur logam dalam sampel padi yang
diukur adalah di bawah nisbah maksimum yang dibenarkan (mg/kg) oleh
Jadual Keempat Belas (Peraturan 38) Peraturan-Peraturan Makanan
Malaysia 1985.
Kata
kunci: Faktor biopemekatan (BCF);
nisbah translokasi; padi (Oryza sativa); unsur logam
RUJUKAN
Coen, N., Mothersill,
C., Kadhim, M. & Wright, E.G. 2001. Heavy metals of relevance to human health induce genomic
instability. The Journal of Pathology 195(3): 293-299.
Fu, J., Zhou, Q., Liu, J., Liu, W.,
Wang, T., Zhang, Q. & Jiang, G. 2008. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China
and its potential risk to human health. Chemosphere 71(7):
1269-1275.
Hossain, M. & Narciso, J. 2004.
Long-term Prospects for the Global Rice Economy.
Retrieved from Food and Agriculture Organization of the United
Nations website: http:// www. fao.org/rice2004/en/pdf/
hossain.pdf. Accessed on 26 August 2010.
Khairiah, J., Habibah,
H.J., Anizan, I., Maimon,
A., Aminah, A. & Ismail, B.S. 2009. Content of heavy metals in soil collected from selected
paddy cultivation areas in Kedah and Perlis, Malaysia. Journal of Applied
Science Research 5(12): 2179-2188.
Kuchiba, M. & Tsubouchi, Y. 1951. The
North Kedah Plain. Economic Geography 27(4): 287-288 & 295.
Liu, W.J., Zhu, Y.G., Hu, Y., Williams, P.N., Gault, A.G., Meherg, A.A., Charnock, J.M. & Smith, F.A. 2006. Arsenic
sequestration in iron plaque, its accumulation and speciation in mature rice
plants (Oryza sativa L.). Environmental
Science & Technology 40(18): 5730-5736.
Liu, W.X., Liu, J.W., Wu, M.Z., Li, Y.,
Zhao, Y. & Li, S.R. 2009. Accumulation and translocation of toxic heavy metals in winter
wheat (Triticum aestivum L.) growing in
agricultural soil of Zhengzhou, China. Bulletin Environmental
Contamination and Toxicology 82(3): 343-347.
Malaysia Food Act. 1983 and Malaysia Food Regulation 1985. Warta Kerajaan Malaysia Vol. 29. Kuala Lumpur: Ministry of Health Malaysia.
Nawaz, A., Khueshid,
K., Arif, M.S. & Ranjha. 2006. Accumulation of heavy metals in soil and rice plant (Oryza sativa L.) irrigated with industrial
effluents. International Journal of Agriculture and Biology 8(3):
391-393.
Praveena, S.M. & Aris, A.Z. 2012. A baseline study of tropical coastal water quality in Port Dickson,
Straits of Malacca, Malaysia. Marine Pollution
Bulletin. doi:
10.1016/j. marpolbul.2012.11.037.
Rahman, M.M., Owens, G. & Naidu, R. 2009. Arsenic levels
in rice grain and assessment of daily dietary intake of arsenic from rice in
arsenic-contaminated regions of Bangladesh-implications to groundwater
irrigation. Environmental Geochemistry and Health 31(1): 179-187.
Rauf, M.A., Hakim, M.A., Hanafi, M.M., Islam, M.M., Rahman, G.K.M.M. & Panaullah, G.M. 2011. Bioaccumulation of arsenic (As) and phosphorous by transplanting Aman rice in arsenic-contaminated clay soils. Australian
Journal of Crop Science 5(12): 1678-1684.
Sanagi, M.M., Ling, S.L., Nasir, Z., Hermawan,
D., Ibrahim, W.A. & Abu Naim, A. 2009. Comparison of signal-to-noise, blank determination, and linear regression
methods for the estimation of detection and quantification limits for volatile
organic compounds by gas chromatography. Journal of AOAC
International 92(6): 1833-1838.
Sharma, R.K., Agrawal, M. &
Marshall, F. 2007. Heavy metal
contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66(2): 258-266.
Singh, S., Sinha, S., Saxena, R., Pandey, K. & Bhatt, K. 2004. Translocation of metals and its effects in the tomato
plants grown on various amendments of tannery waste: Evidence for involvement
of antioxidants. Chemosphere 57(2): 91-99.
Stolt, J.P., Sneller,
F.E.C., Bryngelsson, T., Lunborh,
T. & Schat, H. 2003. Phytochelation and cadmium accumulation in wheat. Environmental
and Experimental Botany 49(1): 21-28.
USEPA. 1996. Method 3050B Acid Digestion of Soils, Sludges, and Soil. Retrived from http://www.epa.gov/osw/ hazard/testmethods/se846/pdfs/3050b.pdf. Accessed on 3 September 2010.
Yang, Q.W., Shu, W.S., Qiu, J.W., Wang, H.B. & Lan,
C.Y. 2004. Lead in paddy soils and rice plants and its potential
health risk around Lechang Lead/Zinc Mine, Guangdong,China. Environment
International 30(7): 883-889.
Yap,
D.W., Adezrian, J., Khairiah,
J., Ismail, B.S. & Ahmad- Mahir, R. 2009. The
uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-
Eurasian Journal of Agricultural & Environmental Sciences 6(1): 16-19.
Zarcinas, B.A., Ishak,
C.F., McLaughlin, M.J. & Cozens, G. 2004. Heavy metals in
soils and crops in Southeast Asia. 1. Peninsular Malaysia. Environmental
Geochemistry and Health 26(4): 343-357.
Zazoli, M.A., Bazerafshan, E., Hazrati, A. & Tavakkoli, A.
2006. Determination and estimation of Cadmium
intake from Tarom rice. Journal
of Applied Sciences & Environmental Management 10(3): 147-150.
Zhao,
K., Zhang, W., Zhou, L., Liu, X., Xu, J. & Huang, P. 2009. Modeling
transfer of heavy metals in soil-rice system and their risk assessment in paddy
fields. Environmental Earth Sciences 59(3): 519-527.
Zwicker, R., Promsawad,
A., Zwicker, B.M. & Laoharojanaphand,
S. 2010. Cadmium content of commercial and contaminated rice, Oryza sativa, in Thailand and potential
health implications. Bulletin of Environmental Contamination and
Toxicology 84(3): 285-288.
*Pengarang untuk surat-menyurat; email: zaharin@upm.edu.my
|